Силы трения. От чего зависит коэффициент трения гидравлического, покоя, скольжения и качения? Как зависит сила трения от коэффициента трения

Сила трения возникает при относительном пере­мещении двух соприкасающихся тел. Трение, возникающее меж­ду поверхностями различных тел, называют внешним трением . Если тре­ние проявляется между частями одного и того же тела, то оно называет­ся внутренним трением .

В зависимости от характера относительного перемеще­ния соприкасающихся твердых тел различают трение покоя, трение скольжения итрение качения.

Сила трения покоя возникает между неподвижными твердыми те­лами, когда есть силы, действующие в направлении возможного движе­ния тела.

Сила трения покоя всегда равна по модулю и направлена противопо­ложно силе, параллельной поверхности соприкосновения и стремящейся при­вести это тело в движение. Увеличение этой приложенной к телу внешней силы приводит к возрастанию и силы трения покоя. Сила трения покоя направлена в сторону, противоположную возможному перемещению тела.

. (2.14)

Сила трения покоя препятствует началу движения. Но бывают случаи, когда сила трения покоя служит причиной возникновения движения тела. Например, ходьба человека. При ходьбе сила трения покоя, действующая на подо­шву, сообщает нам ускорение. Подошва не скользит назад, и, значит, тре­ние между ней и дорогой – это трение покоя.

Силы трения скольжения , возникающее при скольжении одного тела по другому направлены вдоль поверхности соприкосновения тел в сторону, противоположную перемещению. Для одних и тех же твердых тел сила трения скольжения приблизи­тельно пропорциональна силе, прижимающей одно тело к другому, т. е. силе нормального давления одного тела на другое, перпендикулярной к поверхности, по которой соприкасаются эти тела:

. (2.15)

Коэффициент пропорциональности называется коэф­фициентом трения скольжения, зависящий от материала и состояния трущихся поверхностей. При решении многих практических задач можно с приемлемой точностью считать коэффициент тре­ния постоянной величиной.

Сила трения, действующая на тело в жидкости или газе F в.тр , так же как и сила трения между твердыми поверх­ностями, всегда направлена противоположно направлению движения тела и зависит от скорости тела. При достаточно малых скоростях можно считать, что сила трения пропор­циональна скорости тела:

а при больших скоростях движения – квад­рату скорости:

(2.17)

Коэффициенты и зависят от свойств жидкости или газа и от формы и размеров движущегося тела.

Уменьшить силу трения можно заменив скольжение каче­нием: применение колес, катков, шариковых и роликовых подшип­ников. Коэффициент трения качения в десятки раз меньше коэффи­циента трения скольжения. Существенно, что сила трения качения обратно пропорциональна радиусу катящегося тела. В связи с этим у транспорта, предназначенного для движения по плохим дорогам (у вездеходов например), колеса имеют большой радиус. Сила трения ка­чения F тр.к выражается формулой:

, (2.18)

где N - сила нормального давления, R - радиус катящегося тела, μ - коэффициент трения качения.

Как уже отмечалось выше сила трения скольжения всегда направлена в сторону, противоположную скорости движения. Поэтому ускорение, сообщаемое силой трения

Силой трения называют силу, возникающую при соприкосновении двух тел и препятствующую их относительному перемещению. Она приложена к телам вдоль поверхности соприкосновения. Трение, возникающее между поверхностями различных тел, называют внешним трением. Если трение проявляется между частями одного и того же тела, то оно называется внутренним трением.

Трение между поверхностями двух соприкасающихся твердых тел при отсутствии между ними жидкой или газообразной прослойки называется сухим трением.

Трение между поверхностью твердого тела и окружающей его жидкой или газообразной средой, в которой тело движется, называется вязким трением.

Различают трение покоя, трение скольжения и трение качения.

Сила трения покоя возникает между неподвижными твердыми телами, когда есть силы, действующие в направлении возможного движения тела.

Сила трения покоя всегда равна по модулю и направлена противоположно силе, параллельной поверхности соприкосновения и стремящейся при вести это тело в движение. Увеличение этой приложенной к телу внешней силы приводит к возрастанию и силы трения покоя. Сила трения покоя направлена в сторону, противоположную возможному перемещению тела (рис. 1 а, б). . Максимальная сила трения покоя пропорциональна модулю силы нормального давления , производимого телом на опору:

Так как по третьему закону Ньютона . Здесь - коэффициент трения покоя, зависящий от материала и состояния трущихся поверхностей. Сила трения покоя препятствует началу движения. Но бывают случаи, когда сила трения покоя служит причиной возникновения движения тела. Например, ходьба человека. При ходьбе сила трения покоя, действующая на подошву, сообщает нам ускорение. Подошва не скользит назад, и, значит, трение между ней и дорогой - это трение покоя.

Рассмотрим брусок, лежащий на тележке (рис. 2). На него действует сила , стремящаяся сдвинуть его с места. В противоположном направлении на брусок со стороны тележки действует сила трения покоя . На тележку со стороны бруска действует такая же по модулю и противоположная по направлению сила , приводящая к движению тележки вправо. Сила трения покоя играет принципиальную роль в движении машин. Шины ведущих колес автомобилей как бы отталкиваются от дороги, и при отсутствии пробуксовки толкающая автомобиль сила - это сила трения покоя.

Сила трения скольжения возникает при соприкосновении движущихся относительно друг друга тел и затрудняет их движение. Сила трения скольжения направлена вдоль поверхности соприкосновения в сторону, противоположную скорости движения. Сила трения скольжения прямо пропорциональна силе нормального давления:

где - коэффициент трения скольжения, зависящий от качества обработки поверхностей и их материала.

для данных тел.

( несколько больше ) - сдвинуть тело с места труднее, чем продолжать его начавшееся скольжение).

Сила трения не зависит от площади соприкасающихся поверхностей тел и их положения относительно друг друга, а также от модуля скорости при небольших скоростях, но зависит от направления скорости: при изменении направления скорости изменяется и направление (рис. 3). Действие сил трения скольжения сопровождается превращением механической энергии во внутреннюю.

Существование сил трения объясняется проявлением сил электромагнитного взаимодействия. Силы трения покоя вызываются в основном упругими деформациями микровыступов на поверхности трущихся тел, силы трения скольжения возникают в результате пластических деформаций микровыступов и их частичного разрушения, а также сил межмолекулярного взаимодействия в области контактов.

Что такое коэффициент трения в физике и с чем он связан? Как вычисляют эту величину? Чему численно равен коэффициент трения? На эти и некоторые другие вопросы, которые затрагивает основная тема, мы дадим ответы в ходе статьи. Конечно же, разберем и конкретные примеры, где мы сталкиваемся с явлением, в котором фигурирует коэффициент трения.

Что такое трение?

Трение - один из видов взаимодействий, происходящих между материальными телами. Возникает процесс трения между двумя телами при их соприкосновении той или иной площадью поверхности. Как и многие прочие виды взаимодействия, трение существует исключительно с оглядкой на третий закон Ньютона. Как это получается на практике? Возьмем два абсолютно любых тела. Пускай это будут два деревянных бруска средних размеров.

Начнем проводить их друг мимо друга, осуществляя соприкосновении по площадям. Вы заметите, что перемещать их относительно друг друга станет заметно сложнее, чем просто перемещать их в воздухе. Здесь как раз свою роль начинает играть коэффициент трения. В данном случае мы абсолютно спокойно можем говорить о том, что сила трения может быть описана третьим законом Ньютона: она, приложенная к первому телу, будет равна численно (по модулю, как любят говорить в физике) такой же силе трения, приложенной ко второму телу. Но не будем забывать, что в третьем законе Ньютона есть минус, говорящий о том, что силы хоть и равны между собой по модулю, но направлены в разные стороны. Таким образом, сила трения - векторная.

Природа силы трения

Сила трения скольжения

Раньше было сказано о том, что если внешняя сила превосходит определенное максимальное значение, допустимое для соответствующей системы, то тела, входящие в такую систему, придут в движение относительно друг друга. Будет ли двигаться одно тело или два, или больше - все это неважно. Важно то, что в этом случае возникает сила трения скольжения. Если говорить о ее направлении, то направлена она в сторону, которая противоположна направлению скольжения (или движения). Зависит она от того, какую относительную скорость имеют тела. Но это если вдаваться в разного рода физические нюансы.

Необходимо заметить, что в большинстве случаев принято считать силу трения скольжения независимой от скорости одного тела относительно другого. Она также никак не связана с максимальным значением силы трения покоя. Огромное количество физических задач решаются именно при помощи применения аналогичной модели поведения, что позволяет существенно облегчить процесс решения.

Что такое коэффициент трения скольжения?

Это есть не что иное, как коэффициент пропорциональности, который присутствует в формуле, описывающей процесс приложения силы трения к тому или иному телу. Коэффициент - это безразмерная величина. Иными словами, он выражается исключительно числами. Он не измеряется в килограммах, метрах или еще чем-то. Практически во всех случаях коэффициент трения численно меньше единицы.

От чего он зависит?

Зависит коэффициент трения скольжения от двух факторов: от того, из какого материала изготовлены тела, которые претерпевают соприкосновение, а также от того, как обработана их поверхность. Она может быть рельефной, гладкой, а также на нее может быть нанесено какое-то специальное вещество, которое будет или снижать, или повышать трение.

Как направлена сила трения?

Она направлена в сторону, которая противоположна направлению движения двух или более соприкасающихся тел. Вектор направления прикладывается по касательной линии.

Если контакт происходит между твердым телом и жидкостью

В том случае, если происходит соприкосновение твердого тела с жидкостью (или некоторым объемом газа), мы можем говорить о возникновении силы так называемого вязкого трения. Она, конечно же, численно будет значительно меньше, чем сила сухого трения. Но направление ее (вектор действия) сохраняется тем же. В случае вязкого трения о покое говорить не приходится.

Связана соответствующая сила со скоростью тела. Если скорость маленькая, то сила будет пропорциональна скорости. Если высокая, то она будет пропорциональна уже квадрату скорости. Коэффициент пропорциональности будет неразрывно связан с тем, какую форму имеют тела, между которыми происходит соприкосновение.

Другие случаи возникновения силы трения

Имеет место данный процесс и при качении какого-либо тела. Но обычно им в задачах пренебрегают, так как сила трения качения весьма и весьма мала. Это, на самом деле, упрощает процесс решения соответствующих задач, хотя при этом сохраняется достаточная степень точности итогового ответа.

Внутреннее трение

Этот процесс также называется в физике альтернативным словом “вязкость”. На самом деле он представляет собой ответвление явлений переноса. Свойственен этот процесс текучим телам. Причем речь идет не только о жидкостях, но и о газообразных веществах. Свойство вязкости заключается в оказании сопротивления при переносе одной части вещества относительно другой. При этом логично совершается работа, необходимая на перемещение частиц. Но она рассеивается в окружающем пространстве в виде тепла.

Закон, определяющий силу вязкого трения, был предложен еще Исааком Ньютоном. Произошло это в 1687 году. Закон и по сегодняшний день носит имя великого ученого. Но все это было только в теории, а экспериментальное подтверждение удалось получить только в начале 19-го века. Соответствующие опыты ставились Кулоном, Хагеном и Пуазейлем.

Итак, сила вязкого трения, которая оказывает на жидкость воздействие, пропорциональна относительной скорости слоев, а также площади. В то же время она обратно пропорциональна тому расстоянию, на котором располагаются слои относительно друг друга. Коэффициент внутреннего трения - это коэффициент пропорциональности, который в данном случае определяется сортом газа или жидкого вещества.

Аналогичным образом будет определяться и другой коэффициент, который имеет место в ситуациях с относительным движением двух течений. Это, соответственно, коэффициент гидравлического трения.

Явление трения играет огромную роль в современной технике. В одних случаях с ним борются и стремятся уменьшить, в других же, наоборот, применяют разные методы с целью увеличить силу трения. В данной статье подробнее рассмотрим вопрос, от чего зависит коэффициент трения.

Сила трения и ее виды

Прежде чем перейти к ответу на вопрос, от чего зависит коэффициент трения, следует рассмотреть собственно само явление и его виды.

Каждый человек интуитивно понимает, что любой вид трения предполагает наличие физического контакта минимум двух поверхностей. Это могут быть твердые, жидкие и газообразные среды.

Трение между твердыми телами делится на три вида. Самой большой силой обладает так называемое трение покоя. Многие замечали, что для смещения шкафа или короба, стоящего на полу, необходимо приложить некоторую силу. Величина, которая препятствует этому смещению, называется трением покоя.

Следующий вид - скольжения. По абсолютной величине оно, как правило, на 10-30 % меньше проявляет себя, когда два тела скользят друг по другу. Например, движение конькобежца или лыжника возможны благодаря небольшому значению трения скольжения. В то же время скользить в ботинках по асфальту нельзя из-за значительной силы трения.

Трение качения действует, когда тело с круглой поверхностью катится по некоторой плоскости. Например, движение шарика или ролика в подшипнике или колеса по дороге. В ряде случаев величина трения качения на один-два порядка меньше, чем трения скольжения.

Любые перемещения в жидкостях и газах также сопровождаются появлением трения. В отличие от предыдущих видов, трение в текучих субстанциях зависит от скорости перемещения объекта в них.

Важно понимать, что какой бы вид трения ни рассматривался, соответствующая сила всегда препятствует механическому движению.

Трение покоя и коэффициент µ1

Чтобы понять, от чего зависит коэффициент трения, следует сначала дать ему определение. Начнем с трения покоя. Соответствующая сила математически рассчитывается по следующей формуле:

Где N - на которой находится тело, µ 1 - коэффициент трения покоя. От чего зависит последняя величина:

  • Во-первых, от материалов трущихся поверхностей. Очевидно, что µ 1 будет гораздо меньше для пары дерево-лед, чем для пары дерево-дерево.
  • Во-вторых, от качества обработки поверхностей. Так, если шероховатость (величина микроскопических впадин и пиков и их количество на поверхностях) будет значительной, то коэффициент µ 1 тоже будет большим.
  • В-третьих, µ 1 зависит от температуры тел. В некоторых случаях изменение температуры может существенно поменять характер самого трения. Так, понижение температуры льда приводит к тому, что он перестает скользить, то есть µ 1 возрастает.

Заметим, что от площади контакта двух тел µ 1 не зависит.

Трение скольжения и коэффициент µ2

По своей физической природе трение скольжения существенно не отличается от трения покоя. Формулы, по которым рассчитываются силы для этих видов явления, также имеют одинаковую форму. Для силы скольжения имеем:

Единственным отличием в формулах является то, что в последнем случае используется величина µ 2 - коэффициент трения скольжения. От чего зависит величина? Кратко говоря, µ 2 определяется теми же факторами, что и µ 1 . Поскольку происходит процесс скольжения, то пики и впадины на поверхностях не успевают перейти в плотный механический контакт. Также не успевают образоваться слабые межмолекулярные взаимодействия. Все это обуславливает тот факт, что µ 2 < µ 1 .

Как в случае так и в случае скольжения главной причиной их возникновения является поверхностная шероховатость. Если от нее каким-либо образом избавиться, то можно значительно уменьшить силы F 1 и F 2 . Для этой цели в настоящее время создано большое количество смазочных материалов. Слой смазки приводит к пространственному разделению контактов твердых поверхностей, поэтому силы трения значительно уменьшаются.

Отметим, что коэффициент µ 2 не зависит от площади контакта и от скорости скольжения (при больших скоростях он начинает плавно уменьшаться).

и коэффициент CR

Сразу следует сказать, что причина появления трения качения является совершенно иной, чем для предыдущих рассмотренных видов. Трение качения возникает за счет гистерезиса упругой деформации катящегося тела. Если бы этой деформации не было, то трение качения было бы равно почти нулю.

Сила трения качения F 3 определяется так:

Здесь C R - качения трения коэффициент. От чего зависит C R ? Во-первых, он обратно пропорционален радиусу катящегося тела. Во-вторых, он сильно зависит от твердости контактирующих объектов, чем выше эта твердость, тем меньше C R .

Значения коэффициентов C R так же, как значения µ 1 и µ 2 , приведены в специальных таблицах.

Коэффициент трения в жидкостях и газах

Трение в текучих субстанциях имеет более простую природу, чем то же явление между твердыми телами. Она заключается в механическом взаимодействии с частицами субстанции при движении тела в ней.

Тем не менее, математическое описание энергетических потерь, связанных с этим трением, является достаточно сложным. Соответствующее уравнение называется формулой Дарси-Вейсбаха. Здесь мы не будем приводить ее, а лишь скажем, что для оценки отмеченных потерь использует понятие гидравлического коэффициента трения. От чего зависит его значение? Этот коэффициент определяется режимом течения (ламинарный или турбулентный). Режим же зависит от скорости движения, вязкости и плотности текучей субстанции, а также от диаметра трубы. Все эти параметры позволяют рассчитать так называемое число Рейнольдса, которое однозначно определяет значение коэффициента трения.

Исследование зависимости силы трения от площади поверхности соприкосновения тел

Исследуем, от чего зависит сила трения. Для этого воспользуемся гладкой деревянной доской, деревянным бруском и динамометром.

Рисунок 1.

Сначала проверим, зависит ли сила трения от площади поверхности соприкосновения тел. Положим брусок на горизонтально расположенную доску гранью с самой большой площадью поверхности. Прикрепив к бруску динамометр, будем плавно увеличивать силу, направленную вдоль поверхности доски, и заметим максимальное значение силы трения покоя. Затем поставим тот же брусок на другую грань с меньшей площадью поверхности и вновь измерим максимальное значение силы трения покоя. Опыт показывает, что максимальное значение силы трения покоя не зависит от площади поверхности соприкосновения тел.

Повторив такие же измерения при равномерном движении бруска по поверхности доски, убеждаемся, что сила трения скольжения также не зависит от площади поверхности соприкосновения тел.

Исследование зависимости силы трения от силы давления

Поставим на первый брусок второй такой же.

Рисунок 2.

Этим мы увеличим силу, перпендикулярную поверхности соприкосновения тела и стола (ее называют силой давления~$\overline{P}$). Если теперь мы вновь измерим максимальную силу трения покоя, то увидим, что она увеличилась в два раза. Поставив на два бруска третий, обнаруживаем, что максимальная сила трения покоя увеличилась в три раза.

На основании таких опытов можно сделать вывод, что максимальное значение модуля силы трения покоя прямо пропорционально силе давления.

Взаимодействие тела и опоры вызывает деформацию и тела, и опоры.

Силу упругости $\overline{N}$, возникающую в результате деформации опоры и действующую на тело, называют силой реакции опоры. По третьему закону Ньютона сила давления и сила реакции опоры равны по модулю и противоположны по направлению:

Рисунок 3.

Поэтому предыдущий вывод можно сформулировать так: модуль максимальной силы трения покоя пропорционален силе реакции опоры:

Греческой буквой $\mu$ обозначен коэффициент пропорциональности, называемый коэффициентом трения (соответственно покоя или скольжения).

Опыт показывает, что модуль силы трения скольжения $F_{mp} $, как и модуль максимальной силы трения покоя, пропорционален модулю силы реакции опоры:

Максимальное значение силы трения покоя примерно равно силе трения скольжения, приближенно равны также коэффициенты трения покоя и скольжения.

Безразмерный коэффициент пропорциональности $\mu$ зависит:

  • от природы трущихся поверхностей;
  • от состояния трущихся поверхностей, в частности от их шероховатости;
  • в случае скольжения коэффициент трения является функцией скорости.

Пример 1

Определите минимальное значение тормозного пути автомобиля, начавшего торможение на горизонтальном участке шоссе при скорости движения $20$ м/с. Коэффициент трения равен 0,5.

Дано: $v=20$ м/с, $\mu =0,5$.

Найти: $S_{\min } $-?

Решение: Тормозной путь автомобиля будет иметь минимальное значение при максимальном значении силы трения. Модуль максимального значения силы трения равен:

\[(F_{mp})_{\max } =\mu mg\]

Вектор силы $F_{mp} $при торможении направлен противоположно векторам скорости $\overline{v}_{0} $и перемещения $\overline{S}$.

При прямолинейном равноускоренном движении проекция перемещения $S_{x} $автомобиля на ось, параллельную вектору скорости $\overline{v}_{0} $ автомобиля, равна:

Переходя к модулям величин, получаем:

Значение времени можно найти из условия:

\ \

Тогда для модуля перемещения получаем:

$a=\frac{(F_{mp})_{\max } }{m} =\frac{\mu mg}{m} =\mu g$,то

$S_{\min } =\frac{v_{0} ^{2} }{2\mu g} \approx 40$м.

Ответ: $S_{\min } =40$ м.

Пример 2

Какую силу нужно приложить в горизонтальном направлении к тепловозу массой $8$т, чтобы уменьшить его скорость на $0,3$ м/с за $5$ секунд? Коэффициент трения равен $0,05.$

Дано: $m=8000$ кг, $\Delta v=0,3$ м/с, $\mu =0,05$.

Найти: $F$-?

Рисунок 4.

Запишем уравнение движения тела:

Спроецируем на ось х силы и ускорение:

Поскольку $F_{mp} =\mu mg$, а $a=\frac{v-v_{0} }{t} =\frac{\Delta v}{t} $, получим:

$F=m(\frac{\Delta v}{t} -\mu g)=3440$Н