Что таоке одночлен. Определение одночлена, сопутствующие понятия, примеры

Одночлен - это выражение, представляющее собой произведение двух или более сомножителей, каждый из которых является числом, выраженным буквой, цифрами или степенью (с целым неотрицательным показателем):

2a , a 3 x , 4abc , -7x

Так как произведение одинаковых сомножителей можно записать в виде степени, то отдельно взятая степень (с целым неотрицательным показателем) также является одночленом:

(-4) 3 , x 5 ,

Так как число (целое или дробное), выраженное буквой или цифрами, можно записать в виде произведения этого числа на единицу, то любое отдельно взятое число тоже можно рассматривать как одночлен:

x , 16, -a ,

Стандартный вид одночлена

Стандартный вид одночлена - это одночлен, у которого только один числовой множитель, который обязательно должен быть записан на первом месте. Все переменные стоят в алфавитном порядке и содержатся в одночлене только один раз.

Числа, переменные и степени переменных также относятся к одночленам стандартного вида:

7, b , x 3 , -5b 3 z 2 - одночлены стандартного вида.

Числовой множитель одночлена стандартного вида называется коэффициентом одночлена . Коэффициенты одночлена равные 1 и -1 обычно не пишут.

Если в одночлене стандартного вида нет числового множителя, то подразумевается, что коэффициент одночлена равен 1:

x 3 = 1 · x 3

Если в одночлене стандартного вида нет числового множителя и перед ним стоит знак минус, то подразумевается, что коэффициент одночлена равен -1:

-x 3 = -1 · x 3

Приведение одночлена к стандартному виду

Чтобы привести одночлен к стандартному виду, надо:

  1. Перемножить числовые множители, если их несколько. Возвести числовой множитель в степень, если у него есть показатель. Поставить числовой множитель на первое место.
  2. Перемножить все одинаковые переменные, чтобы каждая переменная встречалась в одночлене только один раз.
  3. Расположить переменные после числового множителя в алфавитном порядке.

Пример. Представьте одночлен в стандартном виде:

а) 3yx 2 · (-2)y 5 x ; б) 6bc · 0,5ab 3

Решение:

а) 3yx 2 · (-2)y 5 x = 3 · (-2)x 2 x y y 5 = -6x 3 y 6
б) 6bc · 0,5ab 3 = 6 · 0,5ab b 3 c = 3ab 4 c

Степень одночлена

Степень одночлена - это сумма показателей степеней всех входящих в него букв.

Если одночлен является числом, то есть не содержит переменных, то его степень считается равной нулю. Например:

5, -7, 21 - одночлены нулевой степени.

Следовательно, чтобы найти степень одночлена, нужно определить показатель степени каждой из входящих в него букв и сложить эти показатели. Если показатель буквы не указан, значит, он равен единице.

Примеры:

Так как у x показатель степени не указан, значит, он равен 1. Других переменных одночлен не содержит, значит, его степень равна 1.

Одночлен содержит всего одну переменную во второй степени, значит, степень данного одночлена равна 2.

3) ab 3 c 2 d

Показатель a равен 1, показатель b - 3, показатель c - 2, показатель d - 1. Степень данного одночлена равна сумме этих показателей.

Одночлены являются одним из основных видов выражений, изучаемых в рамках школьного курса алгебры. В этом материале мы расскажем, что это за выражения, определим их стандартный вид и покажем примеры, а также разберемся с сопутствующими понятиями, такими как степень одночлена и его коэффициент.

Что такое одночлен

В школьных учебниках обычно дается следующее определение этого понятия:

Определение 1

К одночленам относятся числа, переменные, а также их степени с натуральным показателем и разные виды произведений, составленные из них.

Исходя из этого определения, мы можем привести примеры таких выражений. Так, все числа 2 , 8 , 3004 , 0 , - 4 , - 6 , 0 , 78 , 1 4 , - 4 3 7 будут относиться к одночленам. Все переменные, например, x , a , b , p , q , t , y , z тоже будут по определению одночленами. Сюда же можно отнести степени переменных и чисел, например, 6 3 , (− 7 , 41) 7 , x 2 и t 15 , а также выражения вида 65 · x , 9 · (− 7) · x · y 3 · 6 , x · x · y 3 · x · y 2 · z и т.д. Обратите внимание, что в состав одночлена может входить как одно число или переменная, так и несколько, причем они могут быть упомянуты несколько раз в составе одного многочлена.

Такие виды чисел, как целые, рациональные, натуральные тоже относятся к одночленам. Также сюда можно включить действительные и комплексные числа. Так, выражения вида 2 + 3 · i · x · z 4 , 2 · x , 2 · π · x 3 тоже будут одночленами.

Что такое стандартный вид одночлена и как привести выражение к нему

Для удобства работы все одночлены сначала приводят к особому виду, называемому стандартным. Сформулируем конкретно, что же это значит.

Определение 2

Стандартным видом одночлена называют такой его вид, в которой он представляет из себя произведение числового множителя и натуральных степеней разных переменных. Числовой множитель, также называемый коэффициентом одночлена, обычно записывают первым с левой стороны.

Для наглядности подберем несколько одночленов стандартного вида: 6 (это одночлен без переменных), 4 · a , − 9 · x 2 · y 3 , 2 3 5 · x 7 . Сюда же можно отнести выражение x · y (здесь коэффициент будет равен 1), − x 3 (тут коэффициент равен - 1).

Теперь приведем примеры одночленов, которые нужно привести к стандартному виду: 4 · a · a 2 · a 3 (здесь нужно объединить одинаковые переменные), 5 · x · (− 1) · 3 · y 2 (тут нужно объединить слева числовые множители).

Обычно в случае, когда одночлен имеет несколько переменных, записанных буквами, буквенные множители записывают в алфавитном порядке. Например, предпочтительнее запись 6 · a · b 4 · c · z 2 , чем b 4 · 6 · a · z 2 · c . Однако порядок может быть и другим, если этого требует цель вычисления.

Привести к стандартному виду можно любой одночлен. Для этого нужно выполнить все необходимые тождественные преобразования.

Понятие степени одночлена

Очень важным является сопутствующее понятие степени одночлена. Запишем определение данного понятия.

Определение 3

Степенью одночлена , записанного в стандартном виде, является сумма показателей степеней всех переменных, которые входят в его запись. Если ни одной переменной в нем нет, а сам одночлен отличен от 0 , то его степень будет нулевой.

Приведем примеры степеней одночлена.

Пример 1

Так, одночлен a имеет степень, равную 1 , поскольку a = a 1 . Если у нас есть одночлен 7 ,то он будет иметь нулевую степень, поскольку в нем нет переменных и он отличен от 0 . А вот запись 7 · a 2 · x · y 3 · a 2 будет одночленом 8 -й степени, ведь сумма показателей всех степеней переменных, включенных в него, будет равна 8: 2 + 1 + 3 + 2 = 8 .

Одночлен, приведенный к стандартному виду, и исходный многочлен будут иметь одинаковую степень.

Пример 2

Покажем, как подсчитать степень одночлена 3 · x 2 · y 3 · x · (− 2) · x 5 · y . В стандартном виде его можно записать как − 6 · x 8 · y 4 . Вычисляем степень: 8 + 4 = 12 . Значит, степень исходного многочлена также равна 12 .

Понятие коэффициента одночлена

Если у нас есть одночлен, приведенный к стандартному виду, который включает в себя хотя бы одну переменную, то мы говорим о нем как о произведении с одним числовым множителем. Этот множитель называют числовым коэффициентом, или коэффициентом одночлена. Запишем определение.

Определение 4

Коэффициентом одночлена называют числовой множитель одночлена, приведенного к стандартному виду.

Возьмем для примера коэффициенты различных одночленов.

Пример 3

Так, в выражении 8 · a 3 коэффициентом будет число 8 , а в (− 2 , 3) · x · y · z им будет − 2 , 3 .

Особое внимание надо уделить коэффициентам, равным единице и минус единице. Как правило, в явном виде их не указывают. Считается, что в одночлене стандартного вида, в котором нет числового множителя, коэффициент равен 1 , например, в выражениях a , x · z 3 , a · t · x , поскольку их можно рассматривать как как 1 · a , x · z 3 – как 1 · x · z 3 и т.д.

Точно так же в одночленах, в которых нет числового множителя и которые начинаются со знака минус, мы можем считать коэффициентом - 1 .

Пример 4

Например, такой коэффициент будет у выражений − x , − x 3 · y · z 3 , поскольку они могут быть представлены как − x = (− 1) · x , − x 3 · y · z 3 = (− 1) · x 3 · y · z 3 и т.д.

Если у одночлена вообще нет ни одного буквенного множителя, то говорить о коэффициенте можно и в этом случае. Коэффициентами таких одночленов-чисел будут сами эти числа. Так, например, коэффициент одночлена 9 будет равен 9 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Степень одночлена

Для одночлена существует понятие его степени. Разберемся, что это такое.

Определение.

Степень одночлена стандартного вида – это сумма показателей степеней всех переменных, входящих в его запись; если в записи одночлена нет переменных, и он отличен от нуля, то его степень считается равной нулю; число нуль считается одночленом, степень которого не определена.

Определение степени одночлена позволяет привести примеры. Степень одночлена a равна единице, так как a это есть a 1 . Степень одночлена 5 есть нуль, так как он отличен от нуля, и его запись не содержит переменных. А произведение 7·a 2 ·x·y 3 ·a 2 является одночленом восьмой степени, так как сумма показателей степеней всех переменных a , x и y равна 2+1+3+2=8 .

Кстати, степень одночлена, записанного не в стандартном виде, равна степени соответствующего одночлена стандартного вида. Для иллюстрации сказанного вычислим степень одночлена 3·x 2 ·y 3 ·x·(−2)·x 5 ·y . Этот одночлен в стандартном виде имеет вид −6·x 8 ·y 4 , его степень равна 8+4=12 . Таким образом, степень исходного одночлена равна 12 .

Коэффициент одночлена

Одночлен в стандартном виде, имеющий в своей записи хотя бы одну переменную, представляет собой произведение с единственным числовым множителем – числовым коэффициентом . Этот коэффициент называют коэффициентом одночлена. Оформим приведенные рассуждения в виде определения.

Определение.

Коэффициент одночлена – это числовой множитель одночлена, записанного в стандартном виде.

Теперь можно привести примеры коэффициентов различных одночленов. Число 5 – это коэффициент одночлена 5·a 3 по определению, аналогично одночлен (−2,3)·x·y·z имеет коэффициент −2,3 .

Отдельного внимания заслуживают коэффициенты одночленов, равные 1 и −1 . Дело здесь в том, что они обычно не присутствуют в записи в явном виде. Считают, что коэффициент одночленов стандартного вида, не имеющих в своей записи числового множителя, равен единице. Например, одночлены a , x·z 3 , a·t·x и т.п. имеют коэффициент 1 , так как a можно рассматривать как 1·a , x·z 3 – как 1·x·z 3 и т.п.

Аналогично, коэффициентом одночленов, записи которых в стандартном виде не имеют числового множителя и начинаются со знака минус, считают минус единицу. К примеру, одночлены −x , −x 3 ·y·z 3 и т.п. имеют коэффициент −1 , так как −x=(−1)·x , −x 3 ·y·z 3 =(−1)·x 3 ·y·z 3 и т.п.

К слову, понятие коэффициента одночлена зачастую относят и к одночленам стандартного вида, представляющим собой числа без буквенных множителей. Коэффициентами таких одночленов-чисел считают эти числа. Так, например, коэффициент одночлена 7 считают равным 7 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

1. Целый положительный коэффициент. Пусть имеем одночлен +5a, так как положительное число +5 считается совпадающим с арифметическим числом 5, то

5a = a ∙ 5 = a + a + a + a + a.

Также +7xy² = xy² ∙ 7 = xy² + xy² + xy² + xy² + xy² + xy² + xy²; +3a³ = a³ ∙ 3 = a³ + a³ + a³; +2abc = abc ∙ 2 = abc + abc и так далее.

На основании этих примеров мы можем установить, что целый положительный коэффициент показывает, сколько раз буквенный множитель (или: произведение буквенных множителей) одночлена повторяется слагаемым.

К этому следует привыкнуть в такой степени, чтобы в воображении сразу представлялось, что, например, в многочлене

3a + 4a² + 5a³

сводится дело к тому, что сначала a² повторяется 3 раза слагаемым, затем a³ повторяется 4 раза слагаемым и затем a повторяется 5 раз слагаемым.

Также: 2a + 3b + c = a + a + b + b + b + c
x³ + 2xy² + 3y³ = x³ + xy² + xy² + y³ + y³ + y³ и т. п.

2. Положительный дробный коэффициент. Пусть имеем одночлен +a. Так как положительное число + совпадает с арифметическим числом , то +a = a ∙ , а это значит: надо взять три четвертых части от числа a, т. е.

Поэтому: дробный положительный коэффициент показывает, сколько раз и какая часть буквенного множителя одночлена повторяется слагаемым.

Многочлен должно без затруднений представить себе в виде:

и тому подобное.

3. Отрицательный коэффициент. Зная умножение относительных чисел, мы легко установим, что, например, (+5) ∙ (–3) = (–5) ∙ (+3) или (–5) ∙ (–3) = (+5) ∙ (+3) или вообще a ∙ (–3) = (–a) ∙ (+3); также a ∙ (–) = (–a) ∙ (+) и т. п.

Поэтому, если возьмем одночлен с отрицательным коэффициентом, например, –3a, то

–3a = a ∙ (–3) = (–a) ∙ (+3) = (–a) ∙ 3 = – a – a – a (–a взято слагаемым 3 раза).

Из этих примеров мы видим, что отрицательный коэффициент показывает, сколько раз буквенная часть одночлена, или его определенная доля, взятая со знаком минус, повторяется слагаемым.

В этом уроке мы дадим строгое определение одночлена, рассмотрим различные примеры из учебника. Вспомним правила умножения степеней с одинаковыми основаниями. Дадим определение стандартного вида одночлена, коэффициента одночлена и его буквенной части. Рассмотрим два основных типовых действия над одночленами, а именно приведение к стандартному виду и вычисление конкретного численного значения одночлена при заданных значениях входящих в него буквенных переменных. Сформулируем правило приведения одночлена к стандартному виду. Научимся решать типовые задачи с любыми одночленами.

Тема: Одночлены. Арифметические операции над одночленами

Урок: Понятие одночлена. Стандартный вид одночлена

Рассмотри некоторые примеры:

3. ;

Найдем общие черты для приведенных выражений. Во всех трех случаях выражение является произведением чисел и переменных, возведенных в степень. На основании этого дадим определение одночлена : одночленом называют такое алгебраическое выражение, которое состоит из произведения степеней и чисел.

Теперь приведем примеры выражений, не являющихся одночленами:

Найдем отличие этих выражений от предыдущих. Оно состоит в том, что в примерах 4-7 есть операции сложения, вычитания или деления, тогда как в примерах 1-3, являющихся одночленами, этих операций нет.

Приведем еще несколько примеров:

Выражение под номером 8 является одночленом, так как это произведение степени на число, тогда как пример 9 не является одночленом.

Теперь выясним действия над одночленами .

1.Упрощение. Рассмотрим пример №3 ;и пример №2 /

Во втором примере мы видим только один коэффициент - , каждая переменная встречается только один раз, то есть переменная «а » представлена в единственном экземпляре, как «», аналогично переменные «» и «» встречаются только один раз.

В примере №3 наоборот, есть два различных коэффициента - и , переменную «» мы видим дважды - как «» и как «», аналогично переменная «» встречается два раза. То есть, данное выражение следует упростить, таким образом, приходим к первому действию, выполняемому над одночленами - приведение одночлена к стандартному виду . Для этого приведем к стандартному виду выражение из примера 3, затем определим эту операцию и научимся приводить к стандартному виду любой одночлен.

Итак, рассмотри пример:

Первым действием в операции приведения к стандартному виду всегда нужно перемножить все числовые множители:

;

Результат данного действия будет называться коэффициентом одночлена .

Далее необходимо перемножить степени. Перемножим степени переменной «х » согласно правилу умножения степеней с одинаковыми основаниями, в котором говорится, что при умножении показатели степени складываются:

теперь перемножим степени «у »:

;

Итак, приведем упрощенное выражение:

;

Любой одночлен можно привести к стандартному виду. Сформулируем правило приведения к стандартному виду :

Перемножить все числовые множители;

Поставить полученный коэффициент на первое место;

Перемножить все степени, то есть получить буквенную часть;

То есть, любой одночлен характеризуется коэффициентом и буквенной частью. Забегая вперед, отметим, что одночлены, имеющие одинаковую буквенную часть, называются подобными.

Теперь нужно наработать технику приведения одночленов к стандартному виду . Рассмотри примеры из учебника:

Задание: привести одночлен к стандартному виду, назвать коэффициент и буквенную часть.

Для выполнения задания воспользуемся правилом приведения одночлена к стандартному виду и свойствами степеней.

1. ;

3. ;

Комментарии к первому примеру : Для начала определим, действительно ли данное выражение является одночленом, для этого проверим, есть ли в нем операции умножения чисел и степеней и нет ли в нем операций сложения, вычитания или деления. Можем сказать, что данное выражение является одночленом, так как вышеуказанное условие выполняется. Далее, согласно правилу приведения одночлена к стандартному виду, перемножим численные множители:

- мы нашли коэффициент заданного одночлена;

; ; ; то есть, получена буквенная часть выражения:;

запишем ответ: ;

Комментарии ко второму примеру : Следуя правилу выполняем:

1) перемножить числовые множители:

2) перемножить степени:

Переменные и представлены в единственном экземпляре, то есть их перемножить ни с чем нельзя, они переписываются без изменений, степень перемножается:

запишем ответ:

;

В данном примере коэффициент одночлена равен единице, а буквенная часть .

Комментарии к третьему примеру: а налогично предыдущим примерам выполняем действия:

1) перемножить численные множители:

;

2) перемножить степени:

;

выпишем ответ: ;

В данном случае коэффициент одночлена равен «», а буквенная часть .

Теперь рассмотрим вторую стандартную операцию над одночленами . Поскольку одночлен это алгебраическое выражение, состоящее из буквенных переменных, которые могут принимать конкретные числовые значения, то мы имеем арифметическое числовое выражение, которое следует вычислить. То есть, следующая операция над многочленами состоит в вычислении их конкретного числового значения .

Рассмотрим пример. Задан одночлен:

данный одночлен уже приведен к стандартному виду, его коэффициент равен единице, а буквенная часть

Ранее мы говорили, что алгебраическое выражение не всегда можно вычислить, то есть переменные, которые в него входят, могут принимать не любое значение. В случае одночлена же входящие в него переменные могут быть любыми, это является особенностью одночлена.

Итак, в заданном примере требуется вычислить значение одночлена при , , , .