Значение слова скандий. Скандий история Распространение Cкандия в природе

ОПРЕДЕЛЕНИЕ

Скандий - двадцать первый элемент Периодической таблицы. Обозначение - Sc от латинского «scandium». Расположен в четвертом периоде, IIIB группе. Относится к металлам. Заряд ядра равен 21.

Скандий содержится в земной коре в количествах порядка 10 -3 % (масс.). В свободном состоянии он представляет собой серебристо-белый металл (рис.1) с высокой температурой плавления (1541 o С). Плотность - 3,0 г/см 3 . По химической активности скандий уступает лишь щелочным и щелочноземельным металлам. Вследствие пассивирования скандий не растворяется в воде и с ней не взаимодействует.

Рис. 1. Скандий. Внешний вид.

Атомная и молекулярная масса скандия

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии скандий существует в виде одноатомных молекул Sc, значения его атомной и молекулярной масс совпадают. Они равны 44,9559.

Изотопы скандия

Известно, что в природе скандий может находиться в виде единственного стабильного изотопа 45 Sc. Массовое число равно 45, ядро атома содержит двадцать один протон и двадцать четыре нейтрона.

Существуют искусственные изотопы скандия с массовыми числами от 36-ти до 60-ти, среди которых наиболее стабильным является 46 Sc с периодом полураспада равным 83,79 суток, а также десять ядерных изотопов.

Ионы скандия

На внешнем энергетическом уровне атома скандия имеется три электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 1 4s 2 .

В результате химического взаимодействия скандий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Sc 0 -3e → Sc 3+ .

Молекула и атом скандия

В свободном состоянии скандий существует в виде одноатомных молекул Sc. Приведем некоторые свойства, характеризующие атом и молекулу скандия:

Примеры решения задач

ПРИМЕР 1

Скандий

СКА́НДИЙ -я; м. Химический элемент (Sc), металл серого цвета, обладающий высокой прочностью и коррозионной стойкостью.

Ска́ндиевый, -ая, -ое.

ска́ндий

(лат. Scandium), химический элемент III группы периодической системы, относится к редкоземельным элементам. Название от Скандинавского полуострова (лат. Scandia), где был открыт. Плотность 3,02 г/см 3 , t пл 1541°C. Компонент лёгких сплавов с высокими прочностью и коррозионной устойчивостью, катализатор высокотемпературной пара-орто-конверсии водорода, нейтронный фильтр в ядерной технике.

СКАНДИЙ

СКА́НДИЙ (лат. Scandium, в честь Скандинавии - родины Л. Ф. Нильсона), Sc (читается «скандий»), химический элемент с атомным номером 21, атомная масса 44,9559. Природный скандий состоит из одного стабильного изотопа с массовым числом 45. Конфигурация двух внешних электронных слоев 3s 2 p 6 d 1 4s 2 . Степени окисления +1, +2, +3 (валентность I, II, III). Скандий - редкоземельный элемент. Расположен в группе IIIВ периодической системы элементов, в 4-м периоде. Радиус атома 0,164 нм, радиус иона Sc 3+ 0,089 нм (координационное число 6). Энергии последовательной ионизации 6,562, 12,8, 24,8, 74,2, 93,9 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,3.
Первым существование скандия предположил в 1871 Д. И. Менделеев (см. МЕНДЕЛЕЕВ Дмитрий Иванович) . Он предложил название «экабор» и в журнале Русского химического общества описал некоторые свойства нового элемента. Открыт скандий был в 1879 шведским химиком Л. Ф. Нильсоном (см. НИЛЬСОН Ларс Фредерик) при исследовании иттербия (см. ИТТЕРБИЙ) . Первый образец чистого скандия (выше 94%) был получен в 1937.
Содержание скандия в земной коре 1·10 -3 % по массе. Sc - рассеянный элемент. Известно более 120 минералов, содержащих Sc. Наиболее важные собственные минералы Sc: баццит Sc 2 Be 3 Si 6 O 18 и эггонит ScPO 4 ·2H 2 O. В незначительных концентрациях Sc содержится в речных, подземных и морских водах. Обычно сопутствует вольфраму, олову, алюминию, титану и ванадию.
При получении скандия на отходы от переработки W, Sn, Al, Ti и V действуют кислотами или щелочами. Дальнейшую очистку Sc проводят экстракционными методами. Для глубокой очистки Sc перегоняют в глубоком вакууме. Металлический Sc получают методом кальцийтермического восстановления фторида скандия:
2ScF 3 +3Ca=3CaF 2 +2Sc
или его оксида: Sc 2 O 3 +3Ca=3CaO+2Sc
Скандий - серебристый металл с желтым отливом. До 1336°C устойчива a-модификация Sc с гексагональной решеткой типа решетки магния (см. МАГНИЙ) , а = 0,33085 нм, с = 0,52680 нм, плотность 2,989кг/дм 3 . Выше 1336°C устойчива b-модификация с кубической объемно центрированной решеткой. Температура плавления 1541°C, кипения 2837°C. На воздухе Sc при комнатной температуре устойчив, из-за плотной защитной оксидной пленки Sc 2 O 3 . Интенсивная реакция Sc с кислородом (см. КИСЛОРОД) начинается при 200-250°C. При взаимодействии Sc 2 O 3 с щелочами и оксидами щелочноземельных металлов образуются скандиаты NaScO 2 или CaSc 2 O 4. Оксид скандия образует смешанные оксиды 2Sc 2 O 3 ·3ZrO 2 .
Скандий при нагревании реагирует с галогенами (см. ГАЛОГЕНЫ) , водородом (см. ВОДОРОД) , азотом (см. АЗОТ) , серой (см. СЕРА) и фосфором (см. ФОСФОР) . Оксид Sc 2 О 3 обладает слабоосновными свойствами, ему отвечает аморфное основание Sc(ОН) 3· nH 2 O, кристаллический гидроксид Sc(ОН) 3 и ScО(OН). По свойствам гидроксиды скандия похожи на гидроксид алюминия. Хлорид скандия ScCl 3 , нитрат Sc(NO 3) 3 , перхлорат Sc(ClO 4) 3 , сульфат Sc 2 (SO 4) 3 и некоторые другие в водных растворах гидролизованы и выделяются из растворов в виде гидратов. Скандий используется как легирующая добавка. Оксид скандия применяют в производстве ферритов (см. ФЕРРИТЫ) , искусственных гранатов (см. ГРАНАТЫ (синтетические)) , как компонент керамических материалов. Ортофосфат скандия - основа флуоресцирующих составов.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "скандий" в других словарях:

    Церитовый и гадолинитовый металл, из группы бора, открыт в 1879 г. Нильсоном. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. скандий (назв. по месту открытия scandi(navia)) хим. элемент, символ Sc (лат. scandium) … Словарь иностранных слов русского языка

    - (Scandium), Sc, химический элемент III группы периодической системы, атомный номер 21, атомная масса 44,95591, относится к редкоземельным элементам; металл, tпл 1541шC. Открыт шведским химиком Л. Нильсоном в 1879 … Современная энциклопедия

    - (лат. Scandium) Sc, химический элемент III группы периодической системы, атомный номер 21, атомная масса 44,95591, относится к редкоземельным элементам. Назван от Скандинавского п ова (лат. Scandia), где был открыт. Плотность 3,02 г/см³, tпл… … Большой Энциклопедический словарь

    - (символ Sc), серебристо белый элемент III группы периодической таблицы, металл. Был предсказан (под названием экабор) Д. МЕНДЕЛЕЕВЫМ. Открыт в 1879 г. Встречается в тортвейтите и в небольших количествах в других минералах. Является ковким… … Научно-технический энциклопедический словарь

    Sc (от лат. Scandia Cкандинавия * a. scandium; н. Skandium; ф. scandium; и. escandio), хим. элемент III группы периодич. системы Mенделеева; относится к редкоземельным элементам, ат.н. 21, ат. м. 44,9559. Природный C. представлен одним… … Геологическая энциклопедия

    СКАНДИЙ, скандия, мн. нет, муж. (хим.). Редкий металл, не встречающийся в природе в свободном состоянии, а существующий только в окиси, имеющей вид белого порошка. (От названия полуострова Скандинавия.) Толковый словарь Ушакова. Д.Н. Ушаков. 1935 … Толковый словарь Ушакова

    - (Scandium), So, хим. элемент III группы периодич. системыэлементов, ат. номер 21, ат. масса 44,95591, редкоземельный элемент. Вприроде представлен одним стабильным нуклидом 45Sс. Конфигурациявнеш. электронных оболочек 3s2p6d14s2.Энергии… … Физическая энциклопедия

    Сущ., кол во синонимов: 3 металл (86) экабор (1) элемент (159) Словарь синонимов ASIS. В.Н … Словарь синонимов

    скандий - Sc Химический элемент, добывается из отходов производства напр. урана [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы Sc EN scandium … Справочник технического переводчика

    Скандий - (Scandium), Sc, химический элемент III группы периодической системы, атомный номер 21, атомная масса 44,95591, относится к редкоземельным элементам; металл, tпл 1541°C. Открыт шведским химиком Л. Нильсоном в 1879. … Иллюстрированный энциклопедический словарь

    СКАНДИЙ - хим. элемент, символ Sc (лат. Scandium), ат. н. 21, ат. м. 44,96, относится к редкоземельным элементам; серебристый металл с характерным жёлтым отливом, плотность 3020 кг/м3, tпл = 1541 °С, проявляет достаточно высокую хим. активность. В природе… … Большая политехническая энциклопедия

Книги

  • Неорганическая и аналитическая химия скандия , Л. Н. Комиссарова. В монографии обобщены сведения об основных группах неорганических соединений скандия (интерметаллиды, бинарные бескислородные соединения, в том числе галогенидыи роданиды, сложные оксиды,…

Скандий (Scandium) Sc, химический элемент III гр. периодической системы, атомный номер 21, атомная масса 44,9559; относится к редкоземельным элементам. Известен один природные стабильный изотоп 45Sc. Поперечное сечение захвата тепловых нейтронов 1,66.10-21 м2. Конфигурация внешний электронных оболочек атома 3d14s2; устойчивая степень окисления + 3, редко + 1, + 2; энергии ионизации при последоват. переходе от Sc0 к Sc3+ равны соответственно 6,5616, 12,80 и 24,76 эВ; сродство к электрону — 0,73 эВ; электроотрицательность по Полингу 1,3; атомный радиус 0,164 нм, ионный радиус Sc3+ 0,089 нм (координац. число 6), 0,101 нм (8).

Скандий-рассеянный литофильный элемент, геохимически близок РЗЭ иттриевой группы, Mg, Аl, Мh, Zr и Ti. Среднее содержание скандий в земной коре 1 . 10-3 % по массе, концентрация скандий в речных водах 4.10-8 г/л. подземных (2,2-5) x x 10-8 г/л, в воде океанов -8.10-10 г/л. Известно более 120 минералов-носителей СКАНДИЙ Собств. минералы СКАНДИЙ (очень редки): тортвейтит (Sc,Y)2Si2O7, баццит Sc2Be3Si6Ol8, джервисит NaScSi2О6, каскандит CaScSi3O8(ОН), кольбекит (эггонит) ScPO4 . 2Н2 О.

21 Скандий → Титан
Sc

Y
Внешний вид простого вещества


Умеренно мягкий, лёгкий редкоземельный металл серебристого цвета с жёлтым отливом

Свойства атома
Название, символ, номер

Скандий / Scandium (Sc), 21

Атомная масса
(молярная масса)

44,955912(6) а. е. м. (г/моль)

Электронная конфигурация
Радиус атома
Химические свойства
Ковалентный радиус
Радиус иона
Электроотрицательность

1,36 (шкала Полинга)

Электродный потенциал
Степени окисления
Энергия ионизации
(первый электрон)

630,8 (6,54) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)
Температура плавления
Температура кипения
Уд. теплота плавления

15,8 кДж/моль

Уд. теплота испарения

332,7 кДж/моль

Молярная теплоёмкость

25,51 Дж/(K·моль)

Молярный объём

15,0 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

гексагональная (α-Sc)

Параметры решётки

a=3,309 c=5,268 (α-Sc)

Отношение c/a
Прочие характеристики
Теплопроводность

(300 K) 15,8 Вт/(м·К)

Нахождения в природе

Геохимия и минералогия

Среднее содержание скандия в земной коре 10 г/т. Близки по химическим и физическим свойствам к скандию иттрий, лантан и лантаноиды. Во всех природных соединениях скандий, так же как и его аналоги алюминий, иттрий, лантан, проявляет положительную валентность, равную трём, поэтому в окислительно-восстановительных процессах он участия не принимает. Скандий является рассеянным элементом и входит в состав многих минералов. Собственно скандиевых минералов известно 2: тортвейтит (Sc, Y)2 Si2O7 (Sc2O3 до 53,5 %) и стерреттит Sc . 2H2O (Sc2O3 до 39,2 %). Относительно небольшие концентрации обнаружены примерно в 100 минералах. В связи с тем, что по свойствам скандий близок к Mg, Al, Ca, Mn2+, Fe2+, TR (редкоземельным элементам), Hf, Th, U, Zr, главная масса его рассеивается в минералах, содержащих эти элементы. Имеет место изовалентное замещение скандием элементов группы TR, особенно в существенно иттриевых минералах (ксенотим, ассоциация Sc — Y в тортвейтите и замещение Al в берилле). Гетеровалентное замещение скандием Fe2+ и магния в пироксенах, амфиболах, оливине, биотите широко развито в основных и ультраосновных породах, а замещение циркония — в поздние стадии магматического процесса и в пегматитах.

Основные минералы-носители скандия: флюорит (до 1 % Sc2O3), касситерит (0,005-0,2 %), вольфрамит (0-0,4 %), ильменорутил (0,0015-0,3 %), торианит (0,46 % Sc2O3), самарскит (0,45 %), виикит (1,17 %), ксенотим (0,0015-1,5 %), берилл (0,2 %), баццит (скандиевый берилл, 3-14,44 %). В процессе формирования магматических пород и их жильных производных скандий в главной своей массе рассеивается преимущественно в тёмноцветных минералах магматических пород и в незначительной степени концентрируется в отдельных минералах постмагматических образований. Наиболее высокие (30 г/т Sc2O3) концентрации скандия приурочены к ультраосновным и основным породам, в составе которых ведущую роль играют железо-магнезиальные минералы (пироксен, амфибол и биотит). В породах среднего состава среднее содержание Sc2O3 10 г/т, в кислых — 2 г/т. Здесь скандий рассеивается также в тёмноцветных минералах (роговой обманке, биотите) и устанавливается в мусковите, цирконе, сфене. Концентрация в морской воде 0,00004 мг/л.

Химические свойства

Химические свойства скандия похожи на таковые у алюминия. Во всех соединениях скандий проявляет степень окисления +3. Компактный металл на воздухе покрывается с поверхности оксидной пленкой. При нагревании до красного каления реагирует с фтором, кислородом, азотом, углеродом, фосфором. При комнатной температуре реагирует с хлором, бромом и йодом. Реагирует с разбавленными сильными кислотами; концентрированными кислотами-окислителями и HF пассивируется. Реагирует с концентрированными растворами щелочей.

Ион Sc3+ бесцветный диамагнитный, координаионное число в водных растворах 6. Как и в случае алюминия, гидроксид скандия амфотерен и растворяется как в избытке кислот, так и в избытке щелочей; с разбавленным раствором аммиака не реагирует. Хлорид, бромид, иодид и сульфат скандия хорошо растворимы в воде, раствор имеет кислую реакцию вследствие частичного гидролиза, при этом гидратация безводных солей сопровождается бурным выделением тепла. Фторид и фосфат скандия в воде не растворимы, но фторид растворятся в присутствии избытка фторид-ионов с образованием ScF63-. Нитрид, сульфид и карбонат скандия водой нацело гидролизуются. Органические соединения скандия термически относительно устойчивы, но бурно реагируют с водой и воздухом. Они построены в-основном при помощи σ-связей Sc-C и представлены алкильными производными и полимерными циклопентадиенидами.

Получение

Следует отметить значительные ресурсы скандия в золе каменных углей и проблему разработки технологии извлечения скандия при переработке углей на искусственное жидкое топливо.

Мировые ресурсы скандия

Скандий является рассеянным литофильным элементом (элемент горных пород), поэтому для технологии добычи этого элемента важно полное извлечение его из перерабатываемых руд и по мере развития металлургии руд-носителей скандия, его ежегодный объём добычи будет возрастать. Ниже приведены основные руды-носители и масса выделяемого из них попутного скандия:

Бокситы — 71 млн тонн переработки в год, содержат попутный скандий в объёме 710—1420 тонн;
Урановые руды — 50 млн тонн в год, попутный скандий 50—500 тонн в год;
Ильмениты — 2 млн тонн в год, попутный скандий 20—40 тонн в год;
Вольфрамиты — попутный скандий около 30—70 тонн в год;
Касситериты — 200 тысяч тонн в год, попутный скандий 20—25 тонн в год;
Цирконы — 100 тысяч тонн в год, попутный скандий 5—12 тонн в год.
Всего известно более сотни скандий-содержащих минералов, собственные его минералы (тортвейтит, джервисит) очень редки

Скандий присутствует в каменном угле и для его добычи можно вести переработку доменных чугунолитейных шлаков, которая была начата в последние годы в ряде развитых стран.

Применение

1. Металлургия
2. Сверхтвёрдые материалы
3. Микроэлектроника
4. Источники света
5. Ядерная энергетика
6. Медицина
7. Лазерные материалы
8. Производство солнечных батарей
9. МГД-генераторы
10. Рентгеновские зеркала
11. Огнеупорные материалы
12. Производство фианитов
13. Люминофоры

Металлургия

Применение скандия в виде микролегирующей примеси оказывает значительное влияние на ряд практически важных сплавов, так например прибавление 0,4 % скандия к сплавам алюминий-магний повышает временное сопротивление разрыву на 35 %, а предел текучести на 65—84 %, и при этом относительное удлинение остаётся на уровне 20—27 %. Добавка 0,3—0,67 % к хрому, повышает его устойчивость к окислению вплоть до температуры 1290 °C, и аналогичное но ещё более ярко выраженное действие оказывает на жаростойкие сплавы типа «нихром» и в этой области применение скандия куда как эффективнее иттрия. Оксид скандия обладает рядом преимуществ для производства высокотемпературной керамики перед другими оксидами, так прочность оксида скандия при нагревании возрастает и достигает максимума при 1030 °C, в то же время оксид скандия обладает минимальной теплопроводностью и высочайшей стойкостью к термоудару. Скандат иттрия это один из лучших материалов для конструкций, работающих при высоких температурах. Определённое количество оксида скандия постоянно расходуется для производства германатных стёкол для оптоэлектроники.

Главным по объёму применением скандия является его применение в алюминиево-скандиевых сплавах, применяемых в спортивной экипировке (мотоциклы, бейсбольные биты и т. п.) — везде, где требуются высокопрочные материалы. В сплаве с алюминием скандий обеспечивает дополнительную прочность и ковкость. Предел прочности на разрыв у чистого скандия около 400 МПа (40 кгс/мм2), у титана например 250—350 МПа, а у нелегированного иттрия 300 МПа. Применение скандиевых сплавов в авиации и ракетостроении позволит значительно снизить стоимость перевозок и резко повысить надёжность эксплуатируемых систем, в то же время при снижении цен на скандий и его применение для производства автомобильных двигателей так же значительно увеличит их ресурс и частично КПД. Очень важно и то обстоятельство что скандий упрочняет алюминиевые сплавы легированные гафнием. Важной и практически не изученной областью применения скандия является то обстоятельство что подобно легированию иттрием алюминия, легирование чистого алюминия скандием также повышает электропроводность проводов, и эффект резкого упрочнения имеет большие перспективы для применения такого сплава для транспортировки электроэнергии (ЛЭП). Сплавы скандия наиболее перспективные материалы в производстве управляемых снарядов. Ряд специальных сплавов скандия, композитов на скандиевой связке весьма перспективен в области конструирования скелета киборгов. В последние годы важная роль скандия (и отчасти иттрия и лютеция) выявилась в производстве некоторых по составу суперпрочных мартенситностареющих сталей, некоторые образцы которых показали прочность свыше 700 кг/мм2 (свыше 7000 МПа).

Некоторое количество скандия расходуется для легирования жаростойких сплавов никеля с хромом и железом (нихромы и фехрали) для резкого увеличения срока службы при использовании в качестве нагревательной обмотки для печей сопротивления.

Сверхтвёрдые материалы

Скандий используется для получения сверхтвёрдых материалов. Так, например, легирование карбида титана карбидом скандия весьма резко поднимает микротвёрдость (в 2 раза), что делает этот новый материал четвёртым по твёрдости после алмаза (около 98,7 — 120 ГПа), нитрида бора (боразона), (около 77—87 ГПа), сплава бор-углерод-кремний (около 68—77 ГПа), и существенно больше, чем у карбида бора(43,2 — 52 ГПа), карбида кремния (37 ГПа), микротвёрдость сплава карбида скандия и карбида титана около 53,4 ГПа (у карбида титана, например, 29,5 ГПа). Особенно интересны сплавы скандия с бериллием, обладающие уникальными характеристиками по прочности и жаростойкости.

Так, например, бериллид скандия (1 атом скандия и 13 атомов бериллия) обладает наивысшим благоприятным сочетанием плотности, прочности и высокой температуры плавления, и может явится лучшим материалом для строительства аэрокосмической техники, превосходя в этом отношении лучшие сплавы из известных человечеству на основе титана, и ряд композиционных материалов (в том числе ряд материалов на основе нитей углерода и бора).

Микроэлектроника

Оксид скандия (температура плавления 2450 °C) имел важнейшую роль в производстве супер-ЭВМ: ферриты с малой индукцией при использовании в устройствах хранения информации позволяют увеличить скорость обмена данными в несколько раз из-за снижения остаточной индукции с 2 — 3 кГаусс до 0,8 — 1 кГаусс.)

Источники света

Порядка 80 кг скандия (в составе Sc2O3) в год используется для производства осветительных элементов высокой интенсивности. Иодид скандия добавляется в ртутно-газовые лампы, производящие очень правдоподобные источники искусственного света, близкого к солнечному, которые обеспечивают хорошую цветопередачу при съёмке на телекамеру.

Изотопы скандия

Радиоактивный изотоп 46Sc (период полураспада 83,83 сут) используется в качестве «метки» в нефтеперерабатывающей промышленности, для контроля металлургических процессов и лечения раковых опухолей.
Изотоп скандий-47 (период полураспада 3,35 сут) является одним из лучших источников позитронов.

Ядерная энергетика

В атомной промышленности с успехом применяется гидрид и дейтерид скандия — прекрасные замедлители нейтронов и мишень (бустер) в мощных и компактных нейтронных генераторах.

Диборид скандия (температура плавления 2250 °C) применяется в качестве компонента жаропрочных сплавов, а также как материал катодов электронных приборов. В атомной промышленности находит применение бериллид скандия в качестве отражателя нейтронов, и в частности этот материал, равно как и бериллид иттрия предложен в качестве отражателя нейтронов в конструкции атомной бомбы.

Медицина

Важную роль оксид скандия может сыграть в медицине (высококачественные зубные протезы).

Лазерные материалы

Высокотемпературной сверхпроводимости, производстве лазерных материалов (ГСГГ). Галлий-скандий-гадолиниевый гранат (ГСГГ) при легировании его ионами хрома и неодима позволил получить 4,5 % КПД и рекордные параметры в частотном режиме генерации сверхкоротких импульсов, что даёт весьма оптимистичные предпосылки для создания сверхмощных лазерных систем для получения термоядерных микровзрывов уже на основе чистого дейтерия (инерциальный синтез) уже в самом ближайшем будущем. Так например ожидается[кем?] что в ближайшие 10—13 лет лазерные материалы на основе ГСГГ и боратов скандия займут ведущую роль в разработке и оснащении лазерными системами активной обороны для самолётов и вертолётов в развитых странах, и параллельно с этим развитие крупной термоядерной энергетики с привлечением гелия-3, в смесях с гелием-3 лазерный термоядерный микровзрыв уже получен.

Производство солнечных батарей

Оксид скандия в сплаве с оксидом гольмия используется в производстве фотопреобразователей на основе кремния в качестве покрытия. Это покрытие имеет широкую область прозрачности (400—930 нм), и снижает спектральный коэффициент отражения света от кремния до 1—4 %, и при его применении у такого модифицированного фотоэлемента увеличивается ток короткого замыкания на 35—70 %, что в свою очередь позволяет увеличить выходную мощность фотопреобразователей в 1,4 раза.

МГД-генераторы

Хромит скандия используется как один из лучших и наиболее долговечных материалов для изготовления электродов МГД-генераторов, к основной керамической массе добавляют предварительно окисленный хром и спекают, что придаёт материалу повышенную прочность и электропроводность. Наряду с диоксидом циркония как электродным материалом для МГД-генераторов, хромит скандия обладает более высокой стойкостью к эрозии соединениями цезия (используемого в качестве плазмообразующей добавки).

Рентгеновские зеркала

Скандий широко применяется для производства многослойных рентгеновских зеркал (композиции: скандий-вольфрам, скандий-хром, скандий-молибден). Теллурид скандия очень перспективный материал для производства термоэлементов (высокая термо-э.д.с, 255 мкВ/К и малая плотность и высокая прочность).

В последние годы значительный интерес для авиакосмической и атомной техники приобрели тугоплавкие сплавы (интерметаллические соединения) скандия с рением (температура плавления до 2575 °C), рутением (температура плавления до 1840 °C), железом (температура плавления до 1600 °C), (жаропрочность, умеренная плотность и др).

Огнеупорные материалы

Важную роль в качестве огнеупорного материала специального назначения оксид скандия (температура плавления 2450 °C) играет в производстве сталеразливочных стаканов для разливки высоколегированных сталей, по стойкости в потоке жидкого металла оксид скандия превосходит все известные и применяемые материалы (так, например, наиболее устойчивый оксид иттрия уступает в 8,5 раза оксиду скандия) и в этой области, можно сказать, незаменим. Его широкому применению препятствует лишь весьма высокая цена, и в известной степени альтернативным решением в этой области является применение скандатов иттрия армированных нитевидными кристаллами оксида алюминия для увеличения прочности), а также применение танталата скандия.

Производство фианитов

Важную роль играет оксид скандия для производства фианитов, где он является самым лучшим стабилизатором.

Люминофоры

Борат скандия, равно как и борат иттрия применяется в радиоэлектронной промышленности в качестве матрицы для люминофоров.

Толковый словарь русского языка. Д.Н. Ушаков

скандий

скандия, мн. нет, м. (хим.). Редкий металл, не встречающийся в природе в свободном состоянии, а существующий только в окиси, имеющей вид белого порошка. (От названия полуострова Скандинавия.)

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

скандий

м. Редкоземельный химический элемент, серебристо-белый металл, не встречающийся в природе в свободном состоянии.

Энциклопедический словарь, 1998 г.

скандий

СКАНДИЙ (лат. Scandium) Sc, химический элемент III группы периодической системы, атомный номер 21, атомная масса 44,95591, относится к редкоземельным элементам. Назван от Скандинавского п-ова (лат. Scandia), где был открыт. Плотность 3,02 г/см3, tпл 1541°С. Компонент легких сплавов с высокими прочностью и коррозионной устойчивостью, катализатор высокотемпературной пара-орто-конверсии водорода, нейтронный фильтр в ядерной технике.

Скандий

(лат. Scandium), Sc, химический элемент III группы периодической системы Менделеева: атомный номер 21, атомная масса 44,9559; лёгкий металл с характерным жёлтым отливом, который появляется при контакте металла с воздухом. Известен один природный стабильный изотоп 45Sc. Из 10 искусственных радиоактивных изотопов важнейший 46Sc с периодом полураспада 84 сут. С. был предсказан Д. И. Менделеевым в 1870 и выделен в 1879 Л. Ф. Нильсоном из минералов гадолинита и эвксенита, найденных в Скандинавии (лат. Scandia), отсюда и название элемента.

Распространение в природе. Среднее содержание С. в земной коре (кларк) 2,2×10-3% по массе. В горных породах содержание С. различно: в ультраосновных 5×10-4, в основных 2,4×10-3, в средних 2,5×10-4, в гранитах и сиенитах 3.10-4; в осадочных породах (1≈1,3).10-4. С. концентрируется в земной коре в результате магматических, гидротермальных и гипергенных (поверхностных) процессов. Известно два собственных минерала С. ≈ тортвейтит и стерреттит; они встречаются чрезвычайно редко. В целом С. ≈ типичный рассеянный элемент, слабый мигрант (см. также Рассеянных элементов руды). Содержание С. в морской воде 4×10-5 г/л.

Физические и химические свойства. С. существует в двух кристаллических модификациях: a и b; при обычной температуре устойчива a-модификация с гексагональной решёткой (а = 3,3080 ═и с = 5,2653), выше 1350 ╟С ≈ b-модификация с кубической объёмноцентрированной решёткой. Плотность С. в а-форме при 25 ╟С 3,020 г/см3, атомной радиус 1,64 , ионный радиус 0,75 , tпл 1539 ╠ 5 ╟С, tkип 2700 ╟C, выше 1600 ╟С летуч. При 25 ╟С удельная теплоёмкость 25,158 кдж/(кг. К) , удельное электрическое сопротивление (54≈70,7).10-6ом×см, С. слабый парамагнетик, его атомная магнитная восприимчивость 236-10-6 (20 ╟С). Sc ≈ первый переходный элемент с одним 3d электроном; конфигурация внешних электронов атома 3d14s2.

С.≈ мягкий металл, в чистом состоянии легко поддаётся обработке ≈ ковке, прокатке, штамповке.

По хим. поведению сходен с др. переходными элементами в степени окисления +3 (например, Ti3+, Fe3+, Мп3+), элементами подгруппы Al, Be, а также элементами иттриевой подгруппы, вместе с которыми его иногда относят к редкоземельным элементам. На воздухе покрывается защитной окисной плёнкой толщиной до 600Ǻ, заметное окисление начинается при 250 ╟С. При взаимодействии с водородом (450 ╟С) образуется гидрид ScH2, с азотом (600≈800 ╟С) ≈ нитрид ScN, с галогенами (400≈600 ╟С) ≈ соединения типа ScCI3; С. реагирует также с бором и кремнием при температуре выше 1000 ╟С. Металл легко растворяется в соляной, азотной и серной кислотах (с понижением концентрации кислоты скорость растворения С. резко падает и с 0,001 н. растворами он не реагирует). Соли соляной, серной, азотной, роданистоводородной и уксусной кислот хорошо растворяются в воде, а соли фосфорной, щавелевой и плавиковой кислот мало растворимы; некоторой летучестью обладают ацетилацетонат и его фторпроизводные. На С. практически не действуют разбавленные растворы NaOH (10%) и смесь концентрированных HNO3 и HF (1: 1). В воде соединения С. заметно гидролизуются с образованием основных солей. Ионы Sc3+ склонны к полимеризации, образованию комплексных ионов различного типа, состав которых зависит от природы аниона и pH среды, например Sc (CO3)-2, Sc (SO4)3-3. Основные соли в растворе легко переходят в аморфную гидроокись.

Получение и применение. С. преимущественно в виде окислов извлекают попутно при гидро- и пирометаллургической переработке вольфрамовых, оловянных, титановых, урановых руд и бокситов. Окислы хлорируют или фторируют при повышенной температуре, а затем компактный металлический С. (выход ~ 99,5╟о) получают термическим восстановлением его хлорида или фторида металлическим кальцием с последующей дистилляцией (возгонкой) Sc в высоком вакууме 133,3×10-6н/м2 (10-6мм рт. cm.) при 1600≈1700 ╟С.

Масштабы применения С. весьма ограничены. Окись С. идёт на изготовление ферритов для элементов памяти быстродействующих вычислительных машин. Радиоактивный 46Sc используется в нейтронно-активационном анализе и в медицине. Сплавы С., обладающие небольшой плотностью и высокой температурой плавления, перспективны как конструкционные материалы в ракето- и самолётостроении, а ряд соединений С. может найти применение при изготовлении люминофоров, оксидных катодов, в стекольном и керамических производствах, в химической промышленности (в качестве катализаторов) и в других областях.

Лит.: Борисенко Л. Ф., Скандий, М, 1961; Фаворская Л. В., Химическая технология скандия, А.-А., 1969; Коган Б. И., Названова В. А., Скандий, М., 1961; Справочник но редким металлам, пер. с англ., М., 1965; Vickery R. С., The chemistry of yttrium and scandium, Oxf., 1960.

Л. Н. Комиссарова

Википедия

Скандий

Ска́ндий (; обозначается символом Sc ) - элемент побочной подгруппы третьей группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 21. Простое вещество скандий - лёгкий металл серебристого цвета с характерным жёлтым отливом. Существует в двух кристаллических модификациях: α-Sc с гексагональной решёткой типа магния, β-Sc с кубической объёмноцентрированной решёткой, температура перехода α↔β 1336 °C.

Примеры употребления слова скандий в литературе.

Это прежде всего элементы рассеяния -- литий, йод, бром, галлий, индий, скандий , иттрий, цезий и рубидий, а затем, конечно, радиоактивные элементы.

Четырнадцать элементов, следующих в таблице Менделеева за лантаном, и еще иттрий со скандием - вот они и образуют группу редкоземельных элементов, которые в природе всегда встречаются совместно.

В результате целой гаммы искусственных превращений возникают редкие и рассеянные элементы - германий, галлий, скандий , иттрий и многие другие, получение которых обычными методами металлургии чрезвычайно сложно и стоит дорого.

Железо пруссы брали и набегами и торговлей в Скандии - горной стране, на северном берегу Волчьего моря.

Надо лишь убедиться в том, что скандий на Багровой не выдумка и что месторождение годится для промышленной разработки, тогда мы сможем продать сведения об этой планете за сумму, которой хватит нам обоим на всю оставшуюся жизнь.

Все дело в том, что использовать месторождение здешнего скандия невозможно.

Ты полагаешь, открытое месторождение скандия на ее поверхности появилось случайно?

Простого вещества

Структура решётки

гексагональная (α-Sc)

Параметры решётки

a=3,309 c=5,268 (α-Sc)

Отношение c /a Прочие характеристики Теплопроводность

(300 K) 15,8 Вт/(м·К)

21
3d 1 4s 2


Нахождения в природе

Геохимия и минералогия

Среднее содержание скандия в земной коре - 10 г/т. Близки по химическим и физическим свойствам к скандию иттрий, лантан и лантаноиды. Во всех природных соединениях скандий, так же, как и его аналоги алюминий, иттрий, лантан, проявляет положительную валентность, равную трём, поэтому в окислительно-восстановительных процессах он участия не принимает. Скандий является рассеянным элементом и входит в состав многих минералов. Собственно скандиевых минералов известно 2: тортвейтит (Sc, Y) 2 Si 2 O 7 (Sc 2 O 3 до 53,5 %) и стерреттит Sc 2H 2 O (Sc 2 O 3 до 39,2 %). Относительно небольшие концентрации обнаружены примерно в 100 минералах. В связи с тем, что по свойствам скандий близок к , , , 2+ , 2+ , TR (редкоземельным элементам), , , , , главная масса его рассеивается в минералах, содержащих эти элементы. Имеет место изовалентное замещение скандием элементов группы TR, особенно в существенно иттриевых минералах (ксенотим, ассоциация Sc - Y в тортвейтите и замещение Al в берилле). Гетеровалентное замещение скандием Fe 2+ и магния в пироксенах , амфиболах, оливине, биотите широко развито в основных и ультраосновных породах, а замещение циркония - в поздние стадии магматического процесса и в пегматитах.

Основные минералы-носители скандия: флюорит (до 1 % Sc 2 O 3), касситерит (0,005-0,2 %), вольфрамит (0-0,4 %), ильменорутил (0,0015-0,3 %), торианит (0,46 % Sc 2 O 3), самарскит (0,45 %), виикит (1,17 %), ксенотим (0,0015-1,5 %), берилл (0,2 %), баццит (скандиевый берилл, 3-14,44 %). В процессе формирования магматических пород и их жильных производных скандий в главной своей массе рассеивается преимущественно в темноцветных минералах магматических пород и в незначительной степени концентрируется в отдельных минералах постмагматических образований. Наиболее высокие (30 г/т Sc 2 O 3) концентрации скандия приурочены к ультраосновным и основным породам, в составе которых ведущую роль играют железо-магнезиальные минералы (пироксен, амфибол и биотит). В породах среднего состава среднее содержание Sc 2 O 3 10 г/т, в кислых - 2 г/т. Здесь скандий рассеивается также в темноцветных минералах (роговой обманке, биотите) и устанавливается в мусковите, цирконе, сфене. Концентрация в морской воде - 0,00004 мг/л .

Месторождения

Самые значительные месторождения тортвейтита (минерала, наиболее богатого скандием) расположены на Мадагаскаре и в Норвегии .

История

Физические свойства

Химические свойства

Химические свойства скандия похожи на таковые у алюминия. В большинстве соединений скандий проявляет степень окисления +3. Компактный металл на воздухе покрывается с поверхности оксидной пленкой. При нагревании до красного каления реагирует с фтором, кислородом, азотом, углеродом, фосфором. При комнатной температуре реагирует с хлором, бромом и иодом. Реагирует с разбавленными сильными кислотами; концентрированными кислотами-окислителями и HF пассивируется. Реагирует с концентрированными растворами щелочей.

Ион Sc 3+ бесцветный диамагнитный, координационное число в водных растворах - 6. Как и в случае алюминия, гидроксид скандия амфотерен и растворяется как в избытке кислот, так и в избытке щелочей; с разбавленным раствором аммиака не реагирует. Хлорид, бромид, иодид и сульфат скандия хорошо растворимы в воде, раствор имеет кислую реакцию вследствие частичного гидролиза, при этом гидратация безводных солей сопровождается бурным выделением тепла. Фторид и фосфат скандия в воде не растворимы, но фторид растворятся в присутствии избытка фторид-ионов с образованием ScF 6 3- . Карбид, нитрид, фосфид, сульфид и карбонат скандия водой нацело гидролизуются. Органические соединения скандия термически относительно устойчивы, но бурно реагируют с водой и воздухом. Они построены в основном при помощи σ-связей Sc-C и представлены алкильными производными и полимерными циклопентадиенидами.

Известны также соединения с низшими степенями окисления скандия (+2, +1, 0). Одно из простейших - тёмно-синее твёрдое вещество CsScCl 3 . В этом веществе представлены связи между атомами скандия. Моногидрид скандия ScH известен в газовой фазе. Также низшие степени окисления скандия обнаружены в металлоорганических соединениях. .

Получение

Следует отметить значительные ресурсы скандия в золе каменных углей и проблему разработки технологии извлечения скандия при переработке углей на искусственное жидкое топливо .

Мировые ресурсы скандия

Скандий является рассеянным литофильным элементом (элемент горных пород), поэтому для технологии добычи этого элемента важно полное извлечение его из перерабатываемых руд и по мере развития металлургии руд-носителей скандия, его ежегодный объём добычи будет возрастать. Ниже приведены основные руды-носители и масса выделяемого из них попутного скандия:

  • Бокситы - 71 млн тонн переработки в год, содержат попутный скандий в объёме 710-1420 тонн;
  • Урановые руды - 50 млн тонн в год, попутный скандий 50-500 тонн в год;
  • Ильмениты - 2 млн тонн в год, попутный скандий 20-40 тонн в год;
  • Вольфрамиты - попутный скандий около 30-70 тонн в год;
  • Касситериты - 200 тысяч тонн в год, попутный скандий 20-25 тонн в год;
  • Цирконы - 100 тысяч тонн в год, попутный скандий 5-12 тонн в год.

Всего известно более сотни скандий-содержащих минералов, собственные его минералы (тортвейтит , джервисит) очень редки .

Скандий присутствует в каменном угле , и для его добычи можно вести переработку доменных чугунолитейных шлаков, которая была начата в последние годы в ряде развитых стран.

Производство и потребление скандия

В 1988 году производство оксида скандия в мире составило:

Страна Объём добычи,
не менее,
кг/год
Китай 50
Франция 100
Норвегия 120
США 500
Япония 30
Казахстан 700
Украина 610
Россия 958

Следует учесть колоссальные ресурсы скандия в России и бывшем Советском Союзе (данные по добыче весьма разрозненны, но объёмы добычи, по оценкам независимых специалистов, равны или превышают официальную мировую добычу). В целом, по оценкам независимых специалистов, в настоящее время основными продуцентами скандия (оксида скандия) являются Россия , Китай , Украина и Казахстан . Публикуемые в печати объёмы скандия/оксида скандия в США, Японии, Франции - это в большей степени вторичный металл и металл, закупленный на мировом рынке. В определённой степени в ближайшие годы ожидается значительный объём поступлений скандиевого сырья из Австралии, Канады, Бразилии.

Следует также отметить, что запасы редкоземельного сырья в Монголии, содержащего скандий, - это также перспективный источник скандия для скандиевой промышленности и развития металлургии скандия.

Скандий смело можно назвать металлом XXI века и прогнозировать резкий рост его добычи, рост цен и спрос в связи с переработкой огромного количества каменных углей (особенно переработка каменных углей России) на жидкое топливо.

Применение

Металлургия

Применение скандия в виде микролегирующей примеси оказывает значительное влияние на ряд практически важных сплавов, так, например, прибавление 0,4 % скандия к сплавам алюминий-магний повышает временное сопротивление разрыву на 35 %, а предел текучести на 65-84 %, и при этом относительное удлинение остаётся на уровне 20-27 %. Добавка 0,3-0,67 % к хрому повышает его устойчивость к окислению вплоть до температуры 1290 °C , и аналогичное, но ещё более ярко выраженное действие оказывает на жаростойкие сплавы типа «нихром» и в этой области применение скандия куда как эффективнее иттрия. Оксид скандия обладает рядом преимуществ для производства высокотемпературной керамики перед другими оксидами, так, прочность оксида скандия при нагревании возрастает и достигает максимума при 1030 °C, в то же время оксид скандия обладает минимальной теплопроводностью и высочайшей стойкостью к термоудару . Скандат иттрия - это один из лучших материалов для конструкций, работающих при высоких температурах. Определённое количество оксида скандия постоянно расходуется для производства германатных стёкол для оптоэлектроники.

Сплавы скандия

Главным по объёму применением скандия является его применение в алюминиево-скандиевых сплавах, применяемых в спортивной экипировке (мотоциклы, велосипеды, бейсбольные биты и т. п.) - везде, где требуются высокопрочные материалы. В сплаве с алюминием скандий обеспечивает дополнительную прочность и ковкость.

Например, легирование алюмо-магниевого сплава АМг6 скандием в отсутствие дополнительного упрочнения повышает предел прочности с 32 до 36 кгс/мм 2 , а предел текучести - с 16 до 24 кгс/мм 2 (после 30-процентной нагартовки те же показатели составляют соответственно 42 и 33 кгс/мм 2 у АМг6НПП против 45 и 36 кгс/мм 2 у сплава 01570Н). Для сравнения, предел прочности на разрыв у чистого скандия около 400 МПа (40 кгс/мм 2), у титана, например, 250-350 МПа, а у нелегированного иттрия - 300 МПа. Применение скандиевых сплавов в авиации и гражданском ракетостроении позволит значительно снизить стоимость перевозок и резко повысить надёжность эксплуатируемых систем, в то же время при снижении цен на скандий и его применение для производства автомобильных двигателей так же значительно увеличит их ресурс и частично КПД. Очень важно и то обстоятельство, что скандий упрочняет алюминиевые сплавы, легированные гафнием.

Важной и практически не изученной областью применения скандия является то обстоятельство, что подобно легированию иттрием алюминия легирование чистого алюминия скандием также повышает электропроводность проводов, и эффект резкого упрочнения имеет большие перспективы для применения такого сплава для транспортировки электроэнергии (ЛЭП). Сплавы скандия - наиболее перспективные материалы в производстве управляемых снарядов. Ряд специальных сплавов скандия, композитов на скандиевой связке весьма перспективен в области конструирования скелета киборгов . В последние годы важная роль скандия (и отчасти иттрия и лютеция) выявилась в производстве некоторых по составу суперпрочных мартенситностареющих сталей, некоторые образцы которых показали прочность свыше 700 кг/мм 2 (свыше 7000 МПа).

Некоторое количество скандия расходуется для легирования жаростойких сплавов никеля с хромом и железом (нихромы и фехрали) для резкого увеличения срока службы при использовании в качестве нагревательной обмотки для печей сопротивления.

Сверхтвёрдые материалы

Скандий используется для получения сверхтвёрдых материалов. Так, например, легирование карбида титана карбидом скандия весьма резко поднимает микротвёрдость (в 2 раза), что делает этот новый материал четвёртым по твёрдости после алмаза (около 98,7-120 ГПа), нитрида бора (боразона), (около 77-87 ГПа), сплава бор-углерод-кремний (около 68-77 ГПа), и существенно больше, чем у карбида бора (43,2-52 ГПа), карбида кремния (37 ГПа), микротвёрдость сплава карбида скандия и карбида титана около 53,4 ГПа (у карбида титана, например, 29,5 ГПа). Особенно интересны сплавы скандия с бериллием , обладающие уникальными характеристиками по прочности и жаростойкости.

Лазерные материалы

Высокотемпературной сверхпроводимости, производстве лазерных материалов (ГСГГ). Галлий-скандий-гадолиниевый гранат (ГСГГ) при легировании его ионами хрома и неодима позволил получить 4,5 % КПД и рекордные параметры в частотном режиме генерации сверхкоротких импульсов, что даёт весьма оптимистичные предпосылки для создания сверхмощных лазерных систем для получения термоядерных микровзрывов уже на основе чистого дейтерия (инерциальный синтез) уже в самом ближайшем будущем. Так, например, ожидается [кем? ] , что в ближайшие 10-13 лет лазерные материалы на основе ГСГГ и боратов скандия займут ведущую роль в разработке и оснащении лазерными системами активной обороны для самолётов и вертолётов в развитых странах, и параллельно с этим развитие крупной термоядерной энергетики с привлечением гелия-3, в смесях с гелием-3 лазерный термоядерный микровзрыв уже получен.

Производство солнечных батарей

Оксид скандия в сплаве с оксидом гольмия используется в производстве фотопреобразователей на основе кремния в качестве покрытия. Это покрытие имеет широкую область прозрачности (400-930 нм), и снижает спектральный коэффициент отражения света от кремния до 1-4 %, и при его применении у такого модифицированного фотоэлемента увеличивается ток короткого замыкания на 35-70 %, что, в свою очередь, позволяет увеличить выходную мощность фотопреобразователей в 1,4 раза.

МГД-генераторы

Хромит скандия используется как один из лучших и наиболее долговечных материалов для изготовления электродов МГД-генераторов, к основной керамической массе добавляют предварительно окисленный хром и спекают, что придаёт материалу повышенную прочность и электропроводность. Наряду с диоксидом циркония как электродным материалом для МГД-генераторов, хромит скандия обладает более высокой стойкостью к эрозии соединениями цезия (используемого в качестве плазмообразующей добавки).

Рентгеновские зеркала

Скандий широко применяется для производства многослойных рентгеновских зеркал (композиции: скандий-вольфрам, скандий-хром, скандий-молибден). Теллурид скандия очень перспективный материал для производства термоэлементов (высокая термо-э.д.с, 255 мкВ/К и малая плотность и высокая прочность).

В последние годы значительный интерес для авиакосмической и атомной техники приобрели тугоплавкие сплавы (интерметаллические соединения) скандия с рением (температура плавления до 2575 °C), рутением (температура плавления до 1840 °C), железом (температура плавления до 1600 °C), (жаропрочность, умеренная плотность и др).

Огнеупорные материалы

Важную роль в качестве огнеупорного материала специального назначения оксид скандия (температура плавления 2450 °C) играет в производстве сталеразливочных стаканов для разливки высоколегированных сталей, по стойкости в потоке жидкого металла оксид скандия превосходит все известные и применяемые материалы (так, например, наиболее устойчивый оксид иттрия уступает в 8,5 раза оксиду скандия) и в этой области, можно сказать, незаменим. Его широкому применению препятствует лишь весьма высокая цена, и в известной степени альтернативным решением в этой области является применение скандатов иттрия, армированных нитевидными кристаллами оксида алюминия для увеличения прочности), а также применение танталата скандия.

Производство фианитов

Важную роль играет оксид скандия для производства фианитов, где он является самым лучшим стабилизатором.

Люминофоры

Борат скандия, равно как и борат иттрия, применяется в радиоэлектронной промышленности в качестве матрицы для люминофоров.

Биологическая роль

Скандий не играет никакой биологической роли .

См. также

Напишите отзыв о статье "Скандий"

Примечания

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. (англ.) // Pure and Applied Chemistry . - 2013. - Vol. 85 , no. 5 . - P. 1047-1078 . - DOI :10.1351/PAC-REP-13-03-02 .
  2. Редкол.:Зефиров Н. С. (гл. ред.). Химическая энциклопедия: в 5 т. - Москва: Советская энциклопедия, 1995. - Т. 4. - С. 360. - 639 с. - 20 000 экз. - ISBN 5-85270-039-8.
  3. J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
  4. Менделеев Д. И. // Журнал Русского химического общества. - 1871. - Т. III . - С. 25-56 .
  5. Corbett, J.D. (1981). «Extended metal-metal bonding in halides of the early transition metals». Acc. Chem. Res. 14 (8): 239–246. DOI :10.1021/ar00068a003 .
  6. Smith, R. E. (1973). «Diatomic Hydride and Deuteride Spectra of the Second Row Transition Metals». Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 332 (1588): 113–127. DOI :10.1098/rspa.1973.0015 . Bibcode : .
  7. (1996) «The First Example of a Formal Scandium(I) Complex:  Synthesis and Molecular Structure of a 22-Electron Scandium Triple Decker Incorporating the Novel 1,3,5-Triphosphabenzene Ring». J. Am. Chem. Soc. 118 (32): 7630–7631. DOI :10.1021/ja961253o .
  8. (1991) «η-Arene complexes of scandium(0) and scandium(II)». J. Chem. Soc., Chem. Commun. (19): 1372-1373. DOI :10.1039/C39910001372 .
  9. (2002) «Stabilization of a Diamagnetic Sc I Br Molecule in a Sandwich-Like Structure». Organometallics 21 (13): 2590–2592. DOI :10.1021/om020090b .
  10. (1998) «The first stable scandocene: synthesis and characterisation of bis(η-2,4,5-tri-tert-butyl-1,3-diphosphacyclopentadienyl)scandium(II)». Chem. Commun. (7): 797-798. DOI :10.1039/A800089A .
  11. makeyev.msk.ru/pub/msys/1997/technology.html
  12. (англ.) . www.lenntech.com. Проверено 19 сентября 2009. .

Литература

  • Коган. Б. И., Названова. В. А. Скандий. - М.: Изд-во АН УССР, 1963. - 304 с. с илл.

Ссылки