Как возникает гром и молния. Как образуется гроза

II. Образование молнии и грома

1. Происхождение грозовых туч

Туман, поднявшийся высоко над землёй, состоит из частичек воды и образует облака. Более крупные и тяжёлые облака называются тучами. Одни тучи являются простыми - они молнии и грома не вызывают. Другие же называются грозовыми, так как именно они создают грозу, образуют молнию и гром. От простых дождевых туч грозовые тучи отличаются тем, что они заряжены электричеством: одни - положительным, другие - отрицательным.

Как же образуются грозовые тучи?

Всякий знает, какой сильный ветер бывает во время грозы. Но ещё более сильные воздушные вихри образуются выше над землёй, где движению воздуха не мешают леса и горы. Этот ветер, главным образом, и образует положительное и отрицательное электричество в облаках. Чтобы понять это, рассмотрим, как распределено электричество в каждой водяной капле. Такая капля изображена в увеличенном виде на рис. 8. В центре её находится положительное электричество, а равное ему отрицательное электричество располагается на поверхности капли. Падающие капли дождя подхватываются ветром, попадают в воздушные потоки. Ветер, с силой ударяющий в каплю, разбивает её на части. При этом отколовшиеся наружные частицы капли оказываются заряженными отрицательным электричеством. Оставшаяся более крупная и тяжёлая часть капли заряжена положительным электричеством. Та часть тучи, в которой скапливаются тяжёлые частицы капель, заряжается положительным электричеством.

Рис. 8. Так распределено электричество в дождевой капле. Положительное электричество внутри капли изображено одним (большим) знаком «+».

Чем сильнее ветер, тем скорее туча заряжается электричеством. Ветер затрачивает определенную работу, которая уходит на то, чтобы разделить положительное и отрицательное электричества.

Дождь, выпадающий из тучи, уносит часть электричества тучи на землю и, таким образом, между тучей и землёй создаётся электрическое притяжение.

На рис. 9 показано распределение электричества в туче и на поверхности земли. Если туча заряжена отрицательным электричеством, то, стремясь притянуться к нему, положительное электричество земли будет распределяться на поверхности всех возвышенных предметов, проводящих электрический ток. Чем выше предмет, стоящий на земле, тем меньше расстояние между его верхом и низом тучи и тем меньше остающийся здесь слой воздуха, разделяющий разноимённые электричества. Очевидно, что в таких местах молнии легче пробиться к земле. Об этом мы расскажем ещё подробнее дальше.

Рис. 9. Распределение электричества в грозовой туче и наземных предметах.

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Запрещенный Тесла автора Горьковский Павел

Из книги История свечи автора Фарадей Майкл

ЛЕКЦИЯ II СВЕЧА. ЯРКОСТЬ ПЛАМЕНИ. ДЛЯ ГОРЕНИЯ НЕОБХОДИМ ВОЗДУХ. ОБРАЗОВАНИЕ ВОДЫ На прошлой лекции мы рассмотрели общие свойства и расположение жидкой части свечи, а также и то, каким образом эта жидкость попадает туда, где происходит горение. Вы убедились, что когда свеча

Из книги Молния и гром автора Стекольников И С

6. Влияние молнии на работу электрических систем и радио Очень часто молния ударяет в провода линий передач электрической энергии. При этом либо грозовой разряд поражает один из проводов линии и соединяет его с землёю, либо молния соединяет между собой два или даже три

Из книги Распространненость жизни и уникальность разума? автора Мосевицкий Марк Исаакович

IV. Защита от молнии 1. Молниеотвод О том, как защищаться от опасных действий молнии, много думали уже с давних времён, но настоящее научное изучение этого вопроса началось лишь с середины 18 века, после того как Франклин своими опытами доказал, что молния представляет собой

Из книги Мария Кюри. Радиоактивность и элементы [Самый сокровенный секрет материи] автора Паес Адела Муньос

4. Как человеку защититься от молнии? Чтобы не быть поражённым ударом молнии, нужно избегать во время грозы подходить к молниеотводам или высоким одиночным предметам (столбам, деревьям) на расстояние меньшее 8–10 метров. Если человек застигнут грозой вдали от помещений, то Из книги автора

Образование и исчезновение пригодного для дыхания кислорода Кислород, которым мы дышим, – это O2: молекула из двух атомов кислорода, связанных парой электронов. На Земле немало кислорода и в других формах: в составе диоксида углерода, воды, минералов земной коры

Кроется в столкновении ионов (ударной ионизации). Электрическое поле тучи имеет очень большую напряженность. В таком поле свободные электроны получают огромное ускорение. Сталкиваясь с атомами, они ионизируют их. В конечном итоге возникает поток быстрых электронов. Ударная ионизация образует плазменный канал, по которому проходит основной импульс тока. Происходит электрический разряд, который мы наблюдаем в виде молнии. Длина такого разряда может достигать нескольких километров и продолжаться до нескольких секунд. Молния всегда сопровождается яркой вспышкой света и громом. Очень часто молнии возникают во время грозы, однако случаются и исключения. Одним из самых неизученных учеными природных явлений, связанных с электрическими разрядами, является шаровая молния. Известно лишь, что возникает она внезапно и может нанести значительный ущерб. Так молния такая яркая?Сила электрического тока при ударе молнии может достигать 100 000 Ампер. При этом выделяется огромная энергия (около Джоулей). Температура основного канала достигает почти 10 000 градусов. Эти характеристики и рождают яркий свет, который можно наблюдать при разряде молнии. После такого мощного электрического разряда наступает пауза, которая может длиться от 10 до 50 секунд. За это время основной канал почти гаснет, температура в нем падает до 700 градусов. Учеными установлено, что яркое свечение и нагрев плазменного канала распространяются снизу вверх, а паузы между свечениями составляют всего десятки долей секунд. Именно поэтому несколько мощных импульсов человек воспринимает как единую яркую вспышку молнии.

Видео по теме

Почти все люди боятся грозы или, во всяком случае, опасаются ее и предпочитают переждать в безопасном месте - и это правильный подход. Небо темнеет и затягивается, солнце пропадает, зато гремит гром и сверкает молния – природа неистовствует, и это может быть опасно.

Гроза – явление, из одного названия которого уже многое ясно. Когда все вокруг озаряется вспышками, сопровождаемыми громовыми раскатами, за которыми, как правило, следует сильный , неизбежно возникают вопросы: "Что там происходит?", "Откуда берется молния и она так ярко сверкает?". Природа молнии электрическая.Грозовые тучи – это настоящие гиганты. Они и кажутся огромными, но оттуда все же не ясно, насколько они большие. Высота грозового облака средних размеров составляет несколько километров. Внутри они вовсе не такие спокойные, как может показаться снаружи. Потоки воздуха в тучах хаотично перемещаются во все стороны, все там «бурлит и кипит». Температура в туче тоже распределена вовсе не равномерно. На самом ее верху обычно очень , порядка -40 градусов Цельсия. Вода, которая является основным компонентом грозового облака, при такой температуре, конечно, . Образуются небольшие кусочки льда, которые носятся внутри облака так же, как и обычные капли воды: с огромной скоростью и очень беспорядочно.Льдинки постоянно сталкиваются друг с другом и с водой, они заряжаются электричеством и разрушаются. Самые тяжелые перемещаются ближе к нижней части тучи и там обычно тают, иногда выпадают в виде града. Довольно быстро противоположные электрические заряды в туче концентрируются в разных областях: вверху преобладают положительные, а внизу отрицательные, но бурление внутри не прекращается. Порой возникают мощные потоки, когда множество положительных и отрицательных частиц сталкивается одновременно.Грозовые облака – это очень крупные образования, и когда два мощных вихря, заряженных противоположно, сталкиваются, образуется очень сильный электрический разряд. Это и есть молния . Она ослепительно сверкает, мгновенно нагревая воздух вокруг себя до очень высокой температуры так, что он взрывается. Гром – это и есть этот самый воздушной массы, нагретой электрическим разрядом.Сам электрический разряд может иметь направление либо от одной части тучи к другой, либо от них к . Если молния бьет в объекты, расположенные , то она без труда раскалывает даже большие камни, а все, что горит, от ее удара воспламеняется.Молния притягивается ко всему, что возвышается над остальным ландшафтом. Поэтому чтобы защитить дома, люди придумали громоотводы: это металлические шесты, которые отводят ток в землю и таким способом нейтрализуют его. Но если началась , а вы не дома, то не прячьтесь под высокими объектами, например, под деревьями. Потому что велика вероятность, что молния ударит в одно из них.

Грозовая молния – могучее и величественное явление природы, способное внушать трепет своей мощью. В древности считались проявлением сверхъестественных сил, свидетельством божественного гнева. Однако с развитием науки для человечества стало ясно, что ничего таинственного или сверхъестественного в природе молний нет. Их возникновение и свойства подчиняются вполне понятным физическим законам.

По сути, – это просто очень мощный электрический разряд. Он подобен тем, какие иногда возникают, если активно расчесать чистые сухие волосы пластмассовой расческой или потереть шерстяной тканью эбонитовую палочку. И в том, и в другом случае накапливается статическое электричество, которое разряжается в виде яркой искры и треска. Только в случае с грозовым облаком вместо слабого треска раздается удар грома.

Молния возникает при электризации грозовых туч, при которой внутри облака образуется мощное электрическое поле. Но может возникнуть закономерный вопрос: вообще происходит электризация облаков? Ведь в них нет никаких твердых предметов, который могли бы тереться и сталкиваться друг с другом и таким образом создавать электрическое напряжение.

В действительности все не так сложно, как кажется. Грозовая туча – это просто огромное количество пара, верхняя часть которого находится на высоте 6-7 км, а нижняя не превышает 0,5-1 км над . Но на высоте более 3 км от поверхности температура воздуха всегда ниже нуля, поэтому пар внутри тучи превращается в небольшие льдинки. И эти льдинки находятся в постоянном движении из-за воздушных потоков внутри облака. Чем меньше льдинки, тем они легче, и, попадая в восходящие потоки нагретого воздуха, поднимающегося от поверхности , они тоже перемещаются в верхние слои облака.

На своем пути вверх эти маленькие льдинки сталкиваются с более крупными, и каждое столкновение вызывает электризацию. При этом мелкие льдинки заряжаются положительно, а крупные – отрицательно. В результате подобных перемещений в верхней части грозового облака скапливается большое количество положительно заряженных , а большие, тяжелые и отрицательно заряженные льдинки остаются в нижнем слое. Иначе говоря, верхний край грозовой тучи оказывается заряженным положительно, а нижний – отрицательно.

И когда крупные противоположно заряженные области оказываются довольно близко друг к другу, между ними возникает светящийся плазменный канал, по которому устремляются заряженные частицы. В результате происходит молниевый разряд, который можно наблюдать виде яркого светового зигзага. Электрическое поле тучи имеет огромную напряженность и во время молниевого разряда выделяется огромная энергия порядка миллиарда джоулей.

Молниевый разряд может возникнуть внутри самой грозовой тучи, между двумя соседними облаками или между облаком и земной поверхностью. В последнем случае мощность электрических разрядов между землей и облаками несопоставимо больше, а сила электрической энергии, проходящей через атмосферу, может создавать ток мощностью до 10 000 ампер. Для сравнения стоит вспомнить, что сила тока в обычной электропроводке не превышает 6 ампер.

Молнии обычно имеют форму зигзага, потому, что летящие заряженные частицы сталкиваются воздуха и меняют направление своего движения. Также молнии могут быть линейными или разветвленными. Одной из самых редких и малоизученных форм молнии является , которая имеет форму светящегося шара и может двигаться параллельно к поверхности земли.

Одним из первых свидетельств, говорящих о том, что собой представляет молния, являлся фотоснимок того места, где видна вспышка, сделанный при закрытом затворе. Снимок показывает, что молния – разряд, проходящий по одинаковому пути.

Первичный удар молнии

Сам процесс образования молнии можно разделить на первичный удар и все остальные. Это обосновано тем, что первичный удар молнии, в отличие от других, проделывает путь (канал) для электрического разряда. Происходит это следующим образом. В нижней части тучи скапливается мощный отрицательный заряд. Поверхность земли имеет положительный заряд. Таким образом, электроны, лежащие на дне тучи, под действием разности потенциалов устремляются вниз.

Данный процесс еще не дает никакой вспышки света. В какой-то момент они останавливаются на несколько микросекунд, а после продолжают движение в другом направлении, пробивая себе дорогу к . Каждый такой шаг с остановкой образует ступенчатую структуру. Когда электроны достигают земной поверхности, образуется свободный для прохождения электрических зарядов канал, по которому остальные электроны огромным потоком устремляются вниз.

Электроны, находящиеся вблизи поверхности земли, первые покидают канал, образуя позади себя положительно заряженное место. В это место устремляются близлежащие электроны. Таким образом, весь отрицательный электрический заряд покидает тучу, образуя мощный электрический поток, направленный . Именно в этот момент можно увидеть вспышку света, а после нее услышать гром.

Повторные удары молнии

После того как первичный удар уже образовал канал для прохождения электронов, повторный удар проходит по тому же пути. Это обусловлено тем, что электроны при первичном ударе ионизуют воздух вокруг себя, поэтому для вторичных электронов проводящий канал уже обеспечен. Таким образом, вторичный и последующий удары молнии происходят без пауз и остановок, свойственных первичному удару. Зачастую бывает один-два удара, но нередко можно заметить, как бьет пять-шесть раз в одно и то же место.

Бывает, что лидирующая ветка молнии начинает ветвиться. Такое возможно в том случае, если электроны первичного канала себе разные пути. В этом случае, если одна из ветвей достигает земли гораздо раньше другой, то первая прокладывает себе путь вверх и достигает начала второй ветви. В этот момент основная ветвь опорожняет неосновную, и у наблюдателя складывается впечатление, что именно вторая ветвь бьет по земле, а не первая.

Как правило, где-то в ста метрах от почвы процесс проникновения электронов несколько усложняется. Например, если в месте удара есть какой-нибудь высокий или заостренный предмет, то вследствие образования мощного электрического поля разряд начинает подниматься уже с самого этого предмета, не дожидаясь удара электронов. Таким образом, электроны достигают не поверхности земли, а встречного разряда.

Сколько ни разъясняет наука суть атмосферного электричества, все равно люди вздрагивают при разрядах молнии и невольно сжимаются в ожидании раската грома. Очевидно, в большинстве людей говорит память далеких предков, пытавшихся отыскать хоть какую-то защиту от небесного огня.

Ничего в атмосферном электричестве, разумеется, нет, но от этого молнии и следующие за ними раскаты грома не выглядят менее внушительно и грозно. Так что же на самом деле представляет собой молния?

Как известно из школьного курса физики, все предметы имеют вполне определенный электрический заряд. Столкновение между собой заряженных частиц приводит к созданию больших областей положительных и отрицательных зарядов. Когда такие области оказываются достаточно близко друг от друга, происходит пробой и в создавшийся канал устремляются заряженные частицы. Этот пробой люди и воспринимают как разряд молнии.

Если с молнией более- , то почему вслед за ней приходит ужасающий грохот, напоминающий артиллерийскую канонаду? Ведь та же убеждает людей, что электрический ток нельзя увидеть, услышать или как-то иначе обнаружить, за исключением специальных приборов.

Как оказывается, все дело - в воздухе, вернее, в его свойствах. Дело в том, что, будучи, по сути, изолятором, в момент пробоя он разогревается до температуры порядка 30 000оС. Причем скорость разогрева и соответственно расширения воздушной среды расширяется взрывообразно, что приводит к возникновению ударной волны, которую человеческий слух и воспринимает как грохот или гром.

Следовательно, молния и гром неразрывны, поскольку гром является результатом молнии. Разговоры о том, что якобы бывает молния без грома и наоборот – беспочвенны.

С другой стороны, существует достаточно много необъяснимого связанного с молниями и их проявлениями. Достаточно известны и относительно хорошо изучены такие виды молний как линейная, шнуровая, жгутовая, ленточная. В свою очередь, они бывают едиными и разветвленными. Самая таинственная и пока до конца неисследованная молния – шаровая. С ней связано наибольшее количество странностей и загадок как подтвержденных документально, так и недоказанных.

Неоднократно отмечалось многими очевидцами, что молния мерцает. Дело в том, что молния состоит из множества последовательных разрядов длительностью всего несколько десятков миллионных долей секунды. Это и создает эффект мерцания.

Разряды молний бывают как между отдельными грозовыми облаками, между тучей и землей, а иногда разряд по неясным причинам уходит вертикально в небо.

Что касается молний исходящих из туч в землю, то известно два их типа положительные и отрицательные. Причем, по мнению ученых, именно положительные разряды как более мощные приводят к пожарам.

Все мы видели яркие вспышки на небе когда идет дождь. Это электрические заряды проходящие между грозовым облаком и землей. Такие заряды называют молнии. Но образовываться они могут лишь при определенных условиях.

Внутри грозовых облаков воздушные массы перемещаются с огромной скоростью. Они вовлекают в движение частички воды, находящиеся в облаке. При трении воздушных масс о капли воды, возникают статические электрические заряды. Учеными выяснено, что верхушка грозового облака заряжается положительными зарядами, а в его нижней части происходит накопление отрицательно заряженных частиц. Земля всегда имеет положительный заряд. Отрицательно заряженные частицы облака хотят устремиться к положительно заряженной земле. Но это не происходит постоянно, так как земную поверхность и облако разделяет большой слой воздуха, который изолирует эти заряды друг от друга. Разделять заряды воздух может лишь до достижения ими определенной мощности. При накапливании достаточной мощности в грозовом облаке, отрицательно заряженные частицы устремляются к земле, образую при этом огромные искры в виде молнии.

Когда молния бьет в землю, мы успеваем заметить лишь одну вспышку. На самом деле в этой видимой вспышке происходит разряд около десятка молний. Отрицательно заряженные частицы так быстро летят к земле, что несколько молний воспринимаются за одну.

Как известно, молния бьет в самые высокие места. Это происходит потому, что положительный заряд земной поверхности накапливается всегда на возвышенностях. Поэтому первые молнии бьют в самые высокие здания или деревья, которые располагаются одни на равнине.

Разряды молний сопровождаются выделением огромного тепла. Температура в молнии достигает 16 тысяч градусов. Поэтому при попадании молнии в пляж, на его поверхности песок спекается, образуя стекло.

Добавить сайт в закладки

Молния с точки зрения электричества

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по инициативе которого был проведен опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 г. им была опубликована работа, в которой был описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли.

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

Как происходит формирование молнии? Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми. Иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Схема возникновения молнии: а - формирование; б - разряд.

Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор необъяснённые свойства, отличающие молнии от разрядов между электродами.

Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько кв.км.

Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках (внутриоблачные молнии), а могут ударять в землю (наземные молнии).

Наземные молнии

Схема развития наземной молнии: а, б - две ступени лидера; 1 - облако; 2 - стримеры; 3 - канал ступенчатого лидера; 4 - корона канала; 5 - импульсная корона на головке канала; в - образование главного канала молнии (К).

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизируют их.

По более современным представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов - стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров.

Яркое свечение охватывает при этом все пройденные ступени, затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду. По мере продвижения лидера к земле напряжённость поля на его конце усиливается, и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду.

Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому.

Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.

Внутриоблачные молнии

Внутриоблачные молнии включают в себя обычно только лидерные стадии, их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт, особенно если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.

В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год.

Люди и молния

Молнии - серьезная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, т.к. электрический ток идет по кратчайшему пути "грозовое облако-земля". Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание.

Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших от молнии отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, у него могут начаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока» - места входа и выхода электричества.

Это древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1-2 суток после смерти). Они - результат расширения капилляров в зоне контакта молнии с телом. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга.

При поражении молнией первая медицинская помощь должна быть неотложной. В тяжелых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, через 10-15 минут она, как правило, уже неэффективна. Экстренная госпитализация необходима во всех случаях.

Жертвы молний

В мифологии и литературе:

  • Асклепий (Эскулап), сын Аполлона - бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок, Зевс поразил его своей молнией;
  • Фаэтон, сын бога солнца Гелиоса - однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс пронзил Фаэтона молниями.

Исторические личности:

  • российский академик Г. В. Рихман - в 1753 году погиб от удара молнии;
  • народный депутат Украины, экс-губернатор Ровенской области В. Червоний 4 Июля 2009 года погиб от удара молнии.
  • Рой Салли Ван остался живым после семи ударов молнией;
  • американский майор Саммерфорд умер после продолжительной болезни (результат удара третьей молнией). Четвертая молния полностью разрушила его памятник на кладбище;
  • у индейцев Анд удар молнией считается необходимым для достижения высших уровней шаманской инициации.

Деревья и молния

Высокие деревья - частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах шрамы от молний можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству.

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии.

В следующие сезоны деревья обычно восстанавливают поврежденные ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьезным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

Из деревьев, пораженных молнией, делают музыкальные инструменты, приписывая им уникальные свойства.

Каждую секунду в атмосфере Земли возникает примерно 700 молний, и каждый год около 3000 человек погибают из-за удара молнии. Физическая природа молнии не объяснена окончательно, а большинство людей имеют лишь приблизительное представление о том, что это такое. Какие-то разряды сталкиваются в облаках, или что-то в этом роде. Сегодня мы обратились к нашим авторам по физике, чтобы узнать о природе молнии больше. Как появляется молния, куда бьет молния, и почему гремит гром. Прочитав статью, вы будете знать ответ на эти и многие другие вопросы.

Что такое молния

Молния – искровой электрический разряд в атмосфере.

Электрический разряд – это процесс протекания тока в среде, связанный с существенным увеличением ее электропроводности относительно нормального состояния. Существуют разные виды электрических разрядов в газе: искровой , дуговой , тлеющий .

Искровой разряд происходит при атмосферном давлении и сопровождается характерным треском искры. Искровой разряд представляет собой совокупность исчезающих и сменяющих друг друга нитевидных искровых каналов. Искровые каналы также называют стримерами . Искровые каналы заполнены ионизированным газом, то есть плазмой. Молния – гигантская искра, а гром – очень громкий треск. Но не все так просто.

Физическая природа молнии

Как объясняют происхождение молнии? Система туча-земля или туча-туча представляет собой своеобразный конденсатор. Воздух играет роль диэлектрика между облаками. Нижняя часть облака имеет отрицательный заряд. При достаточной разности потенциалов между тучей и землей возникают условия, в которых происходит образование молнии в природе.

Ступенчатый лидер

Перед основной вспышкой молнии можно наблюдать небольшое пятно, движущееся от тучи к земле. Это так называемый ступенчатый лидер. Электроны под действием разности потенциалов, начинают двигаться к земле. Двигаясь, они сталкиваются с молекулами воздуха, ионизируя их. От тучи к земле прокладывается как бы ионизированный канал. Из-за ионизации воздуха свободными электронами электропроводность в зоне траектории лидера существенно возрастает. Лидер как бы прокладывает путь для основного разряда, двигаясь от одного электрода (тучи) к другому (земле). Ионизация происходит неравномерно, поэтому лидер может разветвляться.


Обратная вспышка

В момент, когда лидер приближается к земле, напряженность на его конце растет. Из земли или из предметов, выступающих над поверхностью (деревья, крыши зданий) навстречу лидеру выбрасывается ответный стример (канал). Это свойство молний используется для защиты от них путем установки громоотвода. Почему молния бьет в человека или в дерево? На самом деле ей все равно, куда бить. Ведь молния ищет наиболее короткий путь между землей и небом. Именно поэтому во время грозы опасно находиться на равнине или на поверхности воды.

Когда лидер достигает земли, по проложенному каналу начинает течь ток. Именно в этот момент и наблюдается основная вспышка молнии, сопровождаемая резким ростом силы тока и выделением энергии. Здесь уместен вопрос, откуда идет молния? Интересно, что лидер распространяется от тучи к земле, а вот обратная яркая вспышка, которую мы и привыкли наблюдать, распространяется от земли к туче. Правильнее говорить, что молния идет не от неба к земле, а происходит между ними.

Почему молния гремит?

Гром возникает в результате ударной волны, порождаемой быстрым расширением ионизированных каналов. Почему сначала мы видим молнию а потом слышим гром? Все дело в разности скоростей звука (340,29 м/с) и света (299 792 458 м/с). Посчитав секунды между громом и молнией и умножив их на скорость звука, можно узнать, на каком расстоянии от Вас ударила молния.


Нужна работа по физике атмосферы? Для наших читателей сейчас действует скидка 10% на

Виды молний и факты о молниях

Молния между небом и землей – не самая распространенная молния. Чаще всего молнии возникают между облаками и не несут угрозы. Помимо наземных и внутриоблачных молний, существуют молнии, образующиеся в верхних слоях атмосферы. Какие есть разновидности молний в природе?

  • Внутриоблачные молнии;
  • Шаровые молнии;
  • «Эльфы»;
  • Джеты;
  • Спрайты.

Последние три вида молний невозможно наблюдать без специальных приборов, так как они образуются на высоте от 40 километров и выше.


Приведем факты о молниях:

  • Протяженность самой длинной зафиксированной молнии на Земле составила 321 км. Эта молния была замечена в штате Оклахома, 2007 г .
  • Самая долгая молния длилась 7,74 секунды и была зафиксирована в Альпах.
  • Молнии образуются не только на Земле . Точно известно о молниях на Венере , Юпитере , Сатурне и Уране . Молнии Сатурна в миллионы раз мощнее земных.
  • Сила тока в молнии может достигать сотен тысяч Ампер, а напряжение – миллиарда Вольт.
  • Температура канала молнии может достигать 30000 градусов Цельсия – это в 6 раз больше температуры поверхности Солнца.

Шаровая молния

Шаровая молния – отдельный вид молнии, природа которого остается загадкой. Такая молния представляет собой движущийся в воздухе светящийся объект в форме шара. По немногочисленным свидетельствам шаровая молния может двигаться по непредсказуемой траектории, разделяться на более мелкие молнии, может взорваться, а может просто неожиданно исчезнуть. Существует множество гипотез о происхождении шаровой молнии, но ни одна не может быть признана достоверной. Факт - никто не знает, как появляется шаровая молния. Часть гипотез сводят наблюдение этого явления к галлюцинациям. Шаровую молнию ни разу не удалось наблюдать в лабораторных условиях. Все, чем могут довольствоваться ученые – это свидетельства очевидцев.

Напоследок предлагаем Вам посмотреть видео и напоминаем: если курсовая или контрольная свалилась на голову как молния в солнечный день, не нужно отчаиваться. Специалиста студенческого сервиса выручают студентов с 2000 года. Обращайтесь за квалифицированной помощью в любое время. 24 часа в сутки, 7 дней в неделю мы готовы помочь вам.

Молния - гигантская электрическая искра. Ударяя в строения, она вызывает пожары, расщепляет крупные деревья, поражает людей. В каждый момент времени в разных точках Земли сверкают молнии более 2000 гроз. В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год

Молния - гигантский электрический искровой разряд в атмосфере, обычно происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране. Ток в разряде молнии достигает 10-20 тысяч ампер, поэтому мало кому из людей удается выжить после поражения их молнией.



Поверхность земного шара является более электропроводной, чем воздух. Однако, с высотой электропроводность воздуха возрастает. Воздух обычно заряжен положительно, а Земля отрицательно. Водяные капли в грозовом облаке заряжены за счет поглощения находящихся в воздухе заряженных мельчайших частиц (ионов). Капля, падающая из облака, имеет в верхней части отрицательный заряд, а в нижней - положительный. падающие капли большей частью поглощают отрицательно заряженные частицы и приобретают отрицательный заряд. В процессе завихрения в облаке капельки воды разбрызгиваются, причем мелкие брызги летят с отрицательным зарядом, а крупные - с положительным. То же происходит с кристаллами льда в верхней части облака. При раскалывании их мелкие частицы льда приобретают положительный заряд и восходящими токами уносятся в верхнюю часть облака, а крупные, заряженные отрицательно, опускаются в нижнюю часть облака.В результате разделения зарядов в грозовом облаке и в окружающем пространстве создаются электрически поля. С накоплением в грозовом облаке больших объемных зарядов между отдельными частями облака или между облаком и земной поверхностью возникают искровые разряды (молнии). Разряды молнии по внешнему виду различны. Наиболее часто наблюдается линейная разветвленная молния, иногда шаровая молния и др.


Молнияпредставляет большой интерес не только как своеобразное явление природы. Она дает возможность наблюдать электрический разряд в газовой среде при напряжении в несколько сотен миллионов вольт и расстоянии между электродами в несколько километров.


В 1750 Б.Франклин предложил Лондонскому королевскому обществу поставить опыт с железной штангой, укрепленной на изолирующем основании и установленной на высокой башне. Он ожидал, что при приближении грозового облака к башне на верхнем конце первоначально нейтральной штанги сосредоточится заряд противоположного знака, а на нижнем – заряд того же знака, что у основания облака. Если напряженность электрического поля при разряде молнии возрастет достаточно сильно, заряд с верхнего конца штанги будет частично стекать в воздух, а штанга приобретет заряд того же знака, что и основание облака.

Предложенный Франклином эксперимент не был осуществлен в Англии, однако его поставил в 1752 в Марли под Парижем французский физик Жан д"Аламбер. Он использовал вставленную в стеклянную бутылку (служившую изолятором) железную штангу длиной 12 м, но не помещал ее на башню. 10 мая его ассистент сообщил, что, когда грозовое облако находилось над штангой, при поднесении к ней заземленной проволоки возникали искры.


Сам Франклин, не зная об успешном опыте, реализованном во Франции, в июне того же года провел свой знаменитый эксперимент с воздушным змеем и наблюдал электрические искры на конце привязанной к нему проволоки. На следующий год, изучая заряды, собранные со штанги, Франклин установил, что основания грозовых облаков обычно заряжены отрицательно.

Более детальные исследования молний стали возможны в конце 19 в. благодаря совершенствованию методов фотографии, особенно после изобретения аппарата с вращающимися линзами, что позволило фиксировать быстро развивающиеся процессы. Такой фотоаппарат широко использовался при изучении искровых разрядов. Было установлено, что существует несколько типов молний, причем наиболее распространены линейные, плоские (внутриоблачные) и шаровые (воздушные разряды).

Линейная молния имеет длину 2-4 км и обладает большой силой тока. Она образуется, когда напряженность электрического поля достигает критического значения и возникает процесс ионизации. Последний в начале создается свободными электронами, всегда имеющимися в воздухе. Под действием электрического поля электроны приобретают большие скорости и на пути к Земле, сталкиваясь с атомами воздуха, расщепляют и ионизируют их. Ионизация происходит в узком канале, который становится проводящим. Воздух разогревается. Через канал нагретого воздуха заряд из облака со скоростью более 150 км/ч стекает к земной поверхности. Это первая стадия процесса. Когда заряд достигает поверхности Земли между облаком и землей, создается проводящий канал, через который навстречу друг другу движутся заряды: положительные заряды от поверхности Земли и отрицательные - скопившиеся в облаке.Линейная молния сопровождается сильным раскатистым звуком - громом, напоминающим взрыв. Звук появляется в результате быстрого нагревания и расширения воздуха в канале, а затем такого же быстрого его охлаждения и сжатия.


Плоские молнии возникают внутри грозового облака и выглядят как вспышки рассеянного света.

Шаровые молнии состоят из светящейся массы в форме шара, несколько меньше футбольного мяча, движущегося с небольшой скоростью в направлении ветра. Разрываются они с большим треском или исчезают бесследно. Появляется шаровая молния после линейной. Часто она через открытые двери и окна проникает в помещения. Природа шаровой молнии еще не известна.Воздушные разряды шаровых молний, начинающиеся от грозового облака, часто направлены горизонтально и не достигают земной поверхности.




Для защиты от молнии создаются молниеотводы, с помощью которых заряд молнии уводится в землю по специально подготовленному безопасному пути.

Разряд молнии обычно состоит из трех или более повторных разрядов – импульсов, следующих по одному и тому же пути. Интервалы между последовательными импульсами очень коротки, от 1/100 до 1/10 с (этим обусловлено мерцание молнии). В целом вспышка длится около секунды или меньше. Типичный процесс развития молнии можно описать следующим образом. Сначала сверху к земной поверхности устремляется слабо светящийся разряд-лидер. Когда он ее достигнет, ярко светящийся обратный, или главный, разряд проходит от земли вверх по каналу, проложенному лидером.


Разряд-лидер, как правило, движется зигзагообразно. Скорость его распространения колеблется от ста до нескольких сотен километров в секунду. На своем пути он ионизирует молекулы воздуха, создавая канал с повышенной проводимостью, по которому обратный разряд движется вверх со скоростью приблизительно в сто раз большей, чем у разряда-лидера. Размер канала определить трудно, однако диаметр разряда-лидера оценивается в 1–10 м, а обратного разряда – в несколько сантиметров.


Разряды молнии создают радиопомехи, испуская радиоволны в широком диапазоне – от 30 кГц до сверхнизких частот. Наибольшее излучение радиоволн находится, вероятно, в диапазоне от 5 до 10 кГц. Такие низкочастотные радиопомехи «сосредоточены» в пространстве между нижней границей ионосферы и земной поверхностью и способны распространяться на расстояния в тысячи километров от источника.


Молния: подарившая жизнь и двигатель эволюции. В 1953 году биохимики С. Миллер (Stanley Miller) и Г. Юри (Harold Urey) показали, что одни из "кирпичиков" жизни - аминокислоты могут быть получены путем пропускания электрического разряда через воду, в которой растворены газы "первобытной" атмосферы Земли (метан, аммиак и водород). Спустя 50 лет другие исследователи повторили эти опыты и получили те же результаты. Таким образом, научная теория зарождения жизни на Земле отводит удару молнии основополагающую роль. При пропускании коротких импульсов тока через бактерии в их оболочке (мембране) появляются поры, через которые внутрь могут проходить фрагменты ДНК других бактерий, запуская один из механизмов эволюции.


Как можно защититься от молнии с помощью водяной струи и лазера. Недавно был предложен принципиально новый способ борьбы с молниями. Громоотвод создадут из… струи жидкости, которой будут стрелять с земли непосредственно в грозовые облака. Громоотводная жидкость представляет собой солевой раствор, в который добавлены жидкие полимеры: соль предназначена для увеличения электропроводности, а полимер препятствует "распаду" струи на отдельные капельки. Диаметр струи составит около сантиметра, а максимальная высота - 300 метров. Когда жидкий громоотвод доработают, им оснастят спортивные и детские площадки, где фонтан включится автоматически, когда напряженность электрического поля станет достаточно высокой, а вероятность удара молнии - максимальной. По струе жидкости с грозового облака будет стекать заряд, делая молнию безопасной для окружающих. Аналогичную защиту от разряда молнии можно сделать и с помощью лазера, луч которого, ионизируя воздух, создаст канал для электрического разряда вдали от скопления людей.


Может ли молния сбить нас с пути? Да, если вы пользуетесь компасом. В известном романе Г. Мелвила "Моби Дик" описан именно такой случай, когда разряд молнии, создавший сильное магнитное поле, перемагнитил стрелку компаса. Однако капитан судна взял швейную иглу, ударил по ней, чтобы намагнитить, и поставил ее вместо испорченной стрелки компаса.


Может ли вас поразить молния внутри дома или самолета? К сожалению, да! Ток грозового разряда может войти в дом по телефонному проводу от рядом стоящего столба. Поэтому при грозе старайтесь не пользоваться обычным телефоном. Считается, что говорить по радиотелефону или по мобильному безопасней. Не следует во время грозы касаться труб центрального отопления и водопровода, которые соединяют дом с землей. Из этих же соображений специалисты советуют при грозе выключать все электрические приборы, в том числе компьютеры и телевизоры.


Что касается самолетов, то, вообще говоря, они стараются облетать районы с грозовой активностью. И все-таки в среднем раз в год в один из самолетов попадает молния. Ее ток поразить пассажиров не может, он стекает по внешней поверхности самолета, но способен вывести из строя радиосвязь, навигационное оборудование и электронику.