Расчет относительной и абсолютной ошибки. Насколько точны будут показатели проведенных измерений? Как сравнивать результаты измерений

Истинное значение физической величины определить абсолютно точно практически невозможно, т.к. любая операция измерения связана с рядом ошибок или, иначе, погрешностей. Причины погрешностей могут быть самыми различными. Их возникновение может быть связано с неточностями изготовления и регулировки измерительного прибора, обусловлено физическими особенностями исследуемого объекта (например, при измерении диаметра проволоки неоднородной толщины результат случайным образом зависит от выбора участка измерений), причинами случайного характера и т.д.

Задача экспериментатора заключается в том, чтобы уменьшить их влияние на результат, а также указать, насколько полученный результат близок к истинному.

Существуют понятия абсолютной и относительной погрешности.

Под абсолютной погрешностью измерений будет понимать разницу между результатом измерения и истинным значением измеряемой величины:

∆x i =x i -x и (2)

где ∆x i – абсолютная погрешность i-го измерения, x i _- результат i-го измерения, x и – истинное значение измеряемой величины.

Результат любого физического измерения принято записывать в виде:

где – среднее арифметическое значение измеряемой величины, наиболее близкое к истинному значению (справедливость x и≈ будет показана ниже), - абсолютная ошибка измерений.

Равенство (3) следует понимать таким образом, что истинное значение измеряемой величины лежит в интервале [ - , + ].

Абсолютная погрешность – величина размерная, она имеет ту же размерность, что и измеряемая величина.

Абсолютная погрешность не полностью характеризует точность произведенных измерений. В самом деле, если мы измерим с одной и той же абсолютной ошибкой ± 1 мм отрезки длиной 1 м и 5 мм, точность измерений будут несравнимы. Поэтому, наряду с абсолютной погрешностью измерения вычисляется относительная погрешность.

Относительной погрешностью измерений называется отношение абсолютной погрешности к самой измеряемой величине:

Относительная погрешность – величина безразмерная. Она выражается в процентах:

В приведенном выше примере относительные ошибки равны 0,1% и 20%. Они заметно различаются между собой, хотя абсолютные значения одинаковы. Относительная ошибка дает информацию о точности

Погрешности измерений

По характеру проявления и причинам появления погрешности можно условно разделить на следующие классы: приборные, систематические, случайные, и промахи (грубые ошибки).

П р о м а х и обусловлены либо неисправностью прибора, либо нарушением методики или условий эксперимента, либо имеют субъективный характер. Практически они определяются как результаты резко отличающиеся от других. Для устранения их появления требуется соблюдать аккуратность и тщательность в работе с приборами. Результаты, содержащие промахи, необходимо исключать из рассмотрения (отбрасывать).

Приборные погрешности. Если измерительный прибор исправен и отрегулирован, то на нем можно провести измерения с ограниченной точностью, определяемой типом прибора. Принято приборную погрешность стрелочного прибора считать равной половине наименьшего деления его шкалы. В приборах с цифровым отсчетом приборную ошибку приравнивают к величине одного наименьшего разряда шкалы прибора.

Систематические погрешности - это ошибки, величина и знак которых постоянны для всей серии измерений, проведенных одним и тем же методом и с помощью одних и тех же измерительных приборов.

При проведении измерений важен не только учет систематических ошибок, но необходимо также добиваться их исключения.

Систематические погрешности условно разделяются на четыре группы:

1) погрешности, природа которых известна и их величина может быть достаточно точно определена. Такой ошибкой является, например, изменение измеряемой массы в воздухе, которая зависит от температуры, влажности, давления воздуха и т.д.;

2) погрешности, природа которых известна, но неизвестна сама величина погрешности. К таким погрешностям относятся ошибки, обусловленные измерительным прибором: неисправность самого прибора, несоответствие шкалы нулевому значению, классу точности данного прибора;

3) погрешности, о существовании которых можно не подозревать, но величина их зачастую может быть значительной. Такие ошибки возникают чаще всего при сложных измерениях. Простым примером такой ошибки является измерение плотности некоторого образца, содержащего внутри полости;

4) погрешности, обусловленные особенностями самого объекта измерения. Например, при измерении электропроводности металла из последнего берут отрезок проволоки. Погрешности могут возникнуть, если имеется какой-либо дефект в материале - трещина, утолщение проволоки или неоднородность, меняющие его сопротивление.

Случайные погрешности - это ошибки, которые изменяются случайным образом по знаку и величине при идентичных условиях повторных измерений одной и той же величины.


Похожая информация.


Ни одно измерение не свободно от погрешностей, или, точнее, вероятность измерения без погрешностей приближается к нулю. Род и причины погрешностей весьма разнообразны и на них влияют многие факторы (рис.1.2).

Общая характеристика влияющих факторов может быть систематизирована с различных точек зрения, например, по влиянию перечисленных факторов (рис.1.2).

По результатам измерения погрешности можно разделить на три вида: систематические, случайные и промахи.

Систематические погрешности, в свою очередь, делят на группы по причине их возникновения и характеру проявления. Они могут быть устранены различными способами, например, введением поправок.

рис. 1.2

Случайные погрешности вызываются сложной совокупностью изменяющихся факторов, обычно неизвестных и трудно поддающихся анализу. Их влияние на результат измерения можно уменьшить, например, путем многократных измерений с дальнейшей статистической обработкой полученных результатов методом теории вероятностей.

К промахам относятся грубые погрешности, которые возникают при внезапных изменениях условия эксперимента. Эти погрешности по своей природе тоже случайны, и после выявления должны быть исключены.

Точность измерений оценивается погрешностями измерений, которые подразделяются по природе возникновения на инструментальную и методическую и по методу вычислений на абсолютную, относительную и приведенную.

Инструментальная погрешность характеризуется классом точности измерительного прибора, который приведен в его паспорте в виде нормируемых основной и дополнительных погрешностей.

Методическая погрешность обусловлена несовершенством методов и средств измерений.

Абсолютная погрешность есть разность между измеренным G u и истинным G значениями величины, определяемая по формуле:

Δ=ΔG=G u -G

Заметим, что величина имеет размерность измеряемой величины.

Относительную погрешность находят из равенства

δ=±ΔG/G u ·100%

Приведенную погрешность рассчитывают по формуле (класс точности измерительного прибора)

δ=±ΔG/G норм ·100%

где G норм – нормирующее значение измеряемой величины. Ее принимают равной:

а) конечному значению шкалы прибора, если нулевая отметка находится на краю или вне шкалы;

б) сумме конечных значений шкалы без учета знаков, если нулевая отметка расположена внутри шкалы;

в) длине шкалы, если шкала неравномерная.

Класс точности прибора устанавливается при его проверке и является нормируемой погрешностью, вычисляемой по формулам

γ=±ΔG/G норм ·100%, если ΔG m =const

где ΔG m – наибольшая возможная абсолютная погрешность прибора;

G k – конечное значение предела измерения прибора; с и d – коэффициенты, учитывающие конструктивные параметры и свойства измерительного механизма прибора.

Например, для вольтметра с постоянной относительной погрешностью имеет место равенство

δ m =±c

Относительная и приведенная погрешности связаны следующими зависимостями:

а) для любого значения приведенной погрешности

δ=±γ·G норм /G u

б) для наибольшей приведенной погрешности

δ=±γ m ·G норм /G u

Из этих соотношений следует, что при измерениях, например вольтметром, в цепи при одном и том же значении напряжения относительная погрешность тем больше, чем меньше измеряемое напряжение. И если этот вольтметр выбран неправильно, то относительная погрешность может быть соизмерима со значением G н , что является недопустимым. Заметим, что в соответствии с терминологией решаемых задач, например, при измерении напряжения G = U , при измерении тока C = I , буквенные обозначения в формулах для вычисления погрешностей необходимо заменять на соответствующие символы.

Пример 1.1. Вольтметром, имеющим значения γ m = 1,0 % , U н = G норм, G k = 450 В , измеряют напряжение U u , равное 10 В. Оценим погрешности измерений.

Решение.

Ответ. Погрешность измерений составляет 45 %. При такой погрешности измеренное напряжение нельзя считать достоверным.

При ограниченных возможностях выбора прибора (вольтметра), методическая погрешность может быть учтена поправкой, вычисленной по формуле

Пример 1.2. Вычислить абсолютную погрешность вольтметра В7-26 при измерениях напряжения в цепи постоянного тока. Класс точности вольтметра задан максимально приведенной погрешностью γ m =±2,5 % . Используемый в работе предел шкалы вольтметра U норм =30 В.

Решение. Абсолютная погрешность вычисляется по известным формулам:

(так как приведенная погрешность, по определению, выражается формулой , то отсюда можно найти и абсолютную погрешность:

Ответ. ΔU = ±0,75 В .

Важными этапами в процессе измерений являются обработка результатов и правила округления. Теория приближенных вычислений позволяет, зная степень точности данных, оценить степень точности результатов еще до выполнения действий: отобрать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата, но не слишком большую, чтобы избавить вычислителя от бесполезных расчетов; рационализировать сам процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точные цифры результаты.

При обработке результатов применяют правила округления.

  • Правило 1. Если первая из отбрасываемых цифр больше пяти, то последняя из сохраняемых цифр увеличивается на единицу.
  • Правило 2. Если первая из отбрасываемых цифр меньше пяти, то увеличение не делается.
  • Правило 3. Если отбрасываемая цифра равняется пяти, а за ней нет значащих цифр, то округление производится на ближайшее четное число, т.е. последняя сохраняемая цифра остается неизменной, если она четная, и увеличивается, если она не четная.

Если за цифрой пять есть значащие цифры, то округление производится по правилу 2.

Применяя правило 3 к округлению одного числа, мы не увеличиваем точность округления. Но при многочисленных округлениях избыточные числа будут встречаться примерно столь же часто, как недостаточно. Взаимная компенсация погрешности обеспечит наибольшую точность результата.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью.

Величина предельной погрешности не является вполне определенной. Для каждого приближенного числа должна быть известна его предельная погрешность (абсолютная или относительная).

Когда она прямо не указана, то подразумевается, что предельная абсолютная погрешность составляет половину единицы последнего выписанного разряда. Так, если приведено приближенное число 4,78 без указания предельной погрешности, то подразумевается, что предельная абсолютная погрешность составляет 0,005. Вследствие этого соглашения всегда можно обойтись без указания предельной погрешности числа, округленного по правилам 1-3, т.е., если приближенное число обозначить буквой α , то

Где Δn – предельная абсолютная погрешность; а δ n – предельная относительная погрешность.

Кроме того, при обработке результатов используются правила нахождения погрешности суммы, разности, произведения и частного.

  • Правило 1. Предельная абсолютная погрешность суммы равна сумме предельных абсолютных погрешностей отдельных слагаемых, но при значительном числе погрешностей слагаемых обычно происходит взаимная компенсация погрешностей, поэтому истинная погрешность суммы лишь в исключительных случаях совпадает с предельной погрешностью или близка к ней.
  • Правило 2. Предельная абсолютная погрешность разности равна сумме предельных абсолютных погрешностей уменьшаемого или вычитаемого.

Предельную относительную погрешность легко найти, вычислив предельную абсолютную погрешность.

  • Правило 3. Предельная относительная погрешность суммы (но не разности) лежит между наименьшей и наибольшей из относительных погрешностей слагаемых.

Если все слагаемые имеют одну и ту же предельную относительную погрешность, то и сумма имеет ту же предельную относительную погрешность. Иными словами, в этом случае точность суммы (в процентном выражении) не уступает точности слагаемых.

В противоположность сумме разность приближенных чисел может быть менее точной, чем уменьшаемое и вычитаемое. Потеря точности особенно велика в том случае, когда уменьшаемое и вычитаемое мало отличаются друг от друга.

  • Правило 4. Предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей: δ=δ 1 +δ 2 , или, точнее, δ=δ 1 +δ 2 +δ 1 δ 2 где δ – относительная погрешность произведения, δ 1 δ 2 - относительные погрешности сомножителей.

Примечания :

1. Если перемножаются приближенные числа с одним и тем же количеством значащих цифр, то в произведении следует сохранить столько же значащих цифр. Последняя из сохраняемых цифр будет не вполне надежна.

2. Если некоторые сомножители имеют больше значащих цифр, чем другие, то до умножения следует первые округлить, сохранив в них столько цифр, сколько имеет наименее точный сомножитель или еще одну (в качестве запасной), дальнейшие цифры сохранять бесполезно.

3. Если требуется, чтобы произведение двух чисел имело заранее данное число вполне надежное, то в каждом из сомножителей число точных цифр (полученное измерением или вычислением) должно быть на единицу больше. Если количество сомножителей больше двух и меньше десяти, то в каждом из сомножителей число точных цифр для полной гарантии должно быть на две единицы больше, чем требуемое число точных цифр. Практически же вполне достаточно взять лишь одну лишнюю цифру.

  • Правило 5. Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя. Точная величина предельной относительной погрешности всегда превышает приближенную. Процент превышения примерно равен предельно относительной погрешности делителя.

Пример 1.3. Найти предельную абсолютную погрешность частного 2,81: 0,571.

Решение. Предельная относительная погрешность делимого есть 0,005:2,81=0,2%; делителя – 0,005:0,571=0,1%; частного – 0,2% + 0,1%=0,3%. Предельная абсолютная погрешность частного приближенно составит 2,81:0,571·0,0030=0,015

Значит, в частном 2,81:0,571=4,92 уже третья значащая цифра не надежна.

Ответ. 0,015.

Пример 1.4. Вычислить относительную погрешность показаний вольтметра, включенного по схеме (рис. 1.3), которая получается, если предположить, что вольтметр имеет бесконечно большое сопротивление и не вносит искажений в измеряемую цепь. Классифицировать погрешность измерения для этой задачи.

рис. 1.3

Решение. Обозначим показания реального вольтметра через И, а вольтметра с бесконечно большим сопротивлениемчерез И ∞ . Искомая относительная погрешность

Заметим, что

тогда получим

Так как R И >>R и R > r, то дробь в знаменателе последнего равенства много меньше единицы. Поэтому можно воспользоваться приближенной формулой , справедливой при λ≤1 для любого α . Предположив, что в этой формуле α = -1 и λ= rR (r+R) -1 R И -1 , получим δ ≈ rR/(r+R) R И .

Чем больше сопротивление вольтметра по сравнению с внешним сопротивлением цепи, тем меньше погрешность. Но условие R<

Ответ. Погрешность систематическая методическая.

Пример 1.5. В цепь постоянного тока (рис.1.4) включены приборы: А – амперметр типа М 330 класса точности К А = 1,5 с пределом измерения I k = 20 А; А 1 – амперметр типа М 366 класса точности К А1 = 1,0 с пределом измерения I к1 = 7,5 А. Найти наибольшую возможную относительную погрешность измерения тока I 2 и возможные пределы его действительного значения, если приборы показали, что I=8,0А. и I 1 = 6,0А. Классифицировать измерение.

рис. 1.4

Решение. Определяем ток I 2 по показаниям прибора (без учета их погрешностей): I 2 =I-I 1 =8,0-6,0=2,0 А.

Найдем модули абсолютных погрешностей амперметров А и А 1

Для А имеем равенство для амперметра

Найдем сумму модулей абсолютных погрешностей:

Следовательно, наибольшая возможная и той же величины, выраженная в долях этой величины, равна 1 . 10 3 – для одного прибора; 2·10 3 – для другого прибора. Какой из этих приборов будет наиболее точным?

Решение. Точность прибора характеризуется значением, обратным погрешности (чем точнее прибор, тем меньше погрешность), т.е. для первого прибора это составит 1/(1 . 10 3) = 1000, для второго – 1/(2 . 10 3) = 500. Заметим, что 1000 > 500. Следовательно, первый прибор точнее второго в два раза.

К аналогичному выводу можно прийти, проверив соответствие погрешностей: 2 . 10 3 / 1 . 10 3 = 2.

Ответ. Первый прибор в два раза точнее второго.

Пример 1.6. Найти сумму приближенных замеров прибора. Найти количество верных знаков: 0,0909 + 0,0833 + 0,0769 + 0.0714 + 0,0667 + 0.0625 + 0,0588+ 0,0556 + 0,0526.

Решение. Сложив все результаты замеров, получим 0,6187. Предельная наибольшая погрешность суммы 0,00005·9=0,00045. Значит, в последнем четвертом знаке суммы возможна ошибка до 5 единиц. Поэтому округляем сумму до третьего знака, т.е. тысячных, получаем 0,619 – результат, в котором все знаки верные.

Ответ. 0,619. Количество верных знаков – три знака после запятой.

Измерения называются прямыми, если значения величин определяются приборами непосредственно (например, измерение длины линейкой, определение времени секундомером и т. д.). Измерения называютсякосвенными , если значение измеряемой величины определяется посредством прямых измерений других величин, которые связаны с измеряемой определенной зависимостью.

Случайные погрешности при прямых измерениях

Абсолютная и относительная погрешность. Пусть проведеноN измерений одной и той же величиныx в отсутствии систематической погрешности. Отдельные результаты измерений имеют вид:x 1 ,x 2 , …,x N . В качестве наилучшего выбирается среднее значение измеренной величины:

Абсолютной погрешностью единичного измерения называется разность вида:

.

Среднее значение абсолютной погрешности N единичных измерений:

(2)

называется средней абсолютной погрешностью .

Относительной погрешностью называется отношение средней абсолютной погрешности к среднему значению измеряемой величины:

. (3)

Приборные погрешности при прямых измерениях

    Если нет особых указаний, погрешность прибора равна половине его цены деления (линейка, мензурка).

    Погрешность приборов, снабженных нониусом, равна цене деления нониуса (микрометр – 0,01 мм, штангенциркуль – 0,1 мм).

    Погрешность табличных величин равна половине единицы последнего разряда (пять единиц следующего порядка за последней значащей цифрой).

    Погрешность электроизмерительных приборов вычисляется согласно классу точности С , указанному на шкале прибора:

Например:
и
,

где U max и I max – предел измерения прибора.

    Погрешность приборов с цифровой индикацией равна единице последнего разряда индикации.

После оценки случайной и приборной погрешностей в расчет принимается та, значение которой больше.

Вычисление погрешностей при косвенных измерениях

Большинство измерений являются косвенными. В этом случае искомая величина Х является функцией нескольких переменных а, b , c , значения которых можно найти прямыми измерениями: Х = f(a , b , c …).

Среднее арифметическое результата косвенных измерений будет равно:

X = f(a ,b ,c …).

Одним из способов вычисления погрешности является способ дифференцирования натурального логарифма функции Х = f(a , b , c …). Если, например, искомая величина Х определяется соотношением Х = , то после логарифмирования получаем:lnX = lna + lnb + ln(c + d ).

Дифференциал этого выражения имеет вид:

.

Применительно к вычислению приближенных значений его можно записать для относительной погрешности в виде:

 =
. (4)

Абсолютная погрешность при этом рассчитывается по формуле:

Х = Х(5)

Таким образом, расчет погрешностей и вычисление результата при косвенных измерениях производят в следующем порядке:

1) Проводят измерения всех величин, входящих в исходную формулу для вычисления конечного результата.

2) Вычисляют средние арифметические значения каждой измеряемой величины и их абсолютные погрешности.

3) Подставляют в исходную формулу средние значения всех измеренных величин и вычисляют среднее значение искомой величины:

X = f(a ,b ,c …).

4) Логарифмируют исходную формулу Х = f(a , b , c …) и записывают выражение для относительной погрешности в виде формулы (4).

5) Рассчитывают относительную погрешность  = .

6) Рассчитывают абсолютную погрешность результата по формуле (5).

7) Окончательный результат записывают в виде:

Х = Х ср Х

Абсолютные и относительные погрешности простейших функций приведены в таблице:

Абсолютная

погрешность

Относительная

погрешность

a + b

a+ b

a+ b

При измерении какой-нибудь величины неизменно есть некоторое отклонение от правдивого значения, от того что ни один прибор не может дать точного итога. Для того, дабы определить допустимые отклонения полученных данных от точного значения, применяют представления относительной и безусловной погрешности.

Вам понадобится

  • – итоги измерений;
  • – калькулятор.

Инструкция

1. В первую очередь, проведите несколько измерений прибором одной и той же величины, дабы иметь вероятность посчитать действительное значение. Чем огромнее будет проведено измерений, тем вернее будет итог. Скажем, взвесьте яблоко на электронных весах. Возможен, вы получили итоги 0,106, 0,111, 0,098 кг.

2. Сейчас посчитайте действительное значение величины (действительное, от того что правдивое обнаружить нереально). Для этого сложите полученные итоги и поделите их на число измерений, то есть обнаружьте среднее арифметическое. В примере действительное значение будет равно (0,106+0,111+0,098)/3=0,105.

3. Для расчета безусловной погрешности первого измерения вычитайте из итога действительное значение: 0,106-0,105=0,001. Таким же образом вычислите безусловные погрешности остальных измерений. Обратите внимание, самостоятельно от того, получится итог с минусом либо с плюсом, знак погрешности неизменно позитивный (то есть вы берете модуль значения).

4. Дабы получить относительную погрешность первого измерения, поделите безусловную погрешность на действительное значение: 0,001/0,105=0,0095. Обратите внимание, обыкновенно относительная погрешность измеряется в процентах, следственно умножьте полученное число на 100%: 0,0095х100%=0,95%. Таким же образом считайте относительные погрешности остальных измерений.

5. Если правдивое значение теснее вестимо, сразу принимайтесь за расчет погрешностей, исключив поиск среднего арифметического итогов измерений. Сразу вычитайте из правдивого значения полученный итог, при этом вы обнаружите безусловную погрешность.

6. После этого разделяете безусловную погрешность на правдивое значение и умножайте на 100% – это будет относительная погрешность. Скажем, число учеников 197, но его округлили до 200. В таком случае рассчитайте погрешность округления: 197-200=3, относительная погрешность: 3/197х100%=1,5%.

Погрешность является величиной, которая определяет допустимые отклонения полученных данных от точного значения. Существуют представления относительной и безусловной погрешности. Их нахождение – одна из задач математического обзора. Впрочем на практике больше значимо бывает посчитать погрешность разброса какого-нибудь измеряемого показателя. Физические приборы имеют собственную возможную погрешность. Но не только ее надобно рассматривать при определении показателя. Для подсчета погрешности разброса σ нужно провести несколько измерений данной величины.

Вам понадобится

  • Прибор для измерения требуемой величины

Инструкция

1. Измерьте прибором либо другим средством измерения надобную вам величину. Повторите измерения несколько раз. Тем огромнее будет получено значений, тем выше точность определения погрешности разброса. Традиционно проводят 6-10 измерений. Запишите полученный комплект значений измеряемой величины.

2. Если все полученные значения равны, следственно, погрешность разброса равна нулю. Если же в ряду есть отличающиеся значения, вычислите погрешность разброса. Для ее определения существует особая формула.

3. Согласно формуле, вычислите вначале среднюю величину <х> из полученных значений. Для этого сложите все значения, а их сумму поделите на число проводимых измерений n.

4. Определите поочередно разность между всей полученной величиной и средним значением <х>. Запишите итоги полученных разностей. После этого возведите все разности в квадрат. Обнаружьте сумму данных квадратов. Сбережете конечный полученный итог суммы.

5. Вычислите выражение n(n-1), где n – число проводимых вами измерений. Поделите итог суммы из предыдущего вычисления на полученное значение.

6. Возьмите корень квадратный частного от деления. Это и будет погрешность разброса σ, измеренной вами величины.

Проводя измерения, невозможно гарантировать их точность, всякий прибор дает некую погрешность . Дабы узнать точность измерений либо класс точности прибора, нужно определить безусловную и относительную погрешность .

Вам понадобится

  • – несколько итогов измерений либо иная выборка;
  • – калькулятор.

Инструкция

1. Проведите измерения не менее 3-5 раз, дабы иметь вероятность посчитать действительное значение параметра. Сложите полученные итоги и поделите их на число измерений, вы получили действительное значение, которое применяется в задачах взамен правдивого (его определить нереально). Скажем, если измерения дали итог 8, 9, 8, 7, 10, то действительное значение будет равно (8+9+8+7+10)/5=8,4.

2. Обнаружьте безусловную погрешность всего измерения. Для этого из итога измерения вычитайте действительное значение, знаками пренебрегайте. Вы получите 5 безусловных погрешностей, по одному для всякого измерения. В примере они будут равны 8-8,4 = 0,4, 9-8,4 =0,6, 8-8,4=0,4, 7-8,4 =1,4, 10-8,4=1,6 (взяты модули итогов).

3. Дабы узнать относительную погрешность всякого измерения, поделите безусловную погрешность на действительное (правдивое) значение. После этого умножьте полученный итог на 100%, традиционно именно в процентах измеряется эта величина. В примере обнаружьте относительную погрешность таким образом: ?1=0,4/8,4=0,048 (либо 4,8%), ?2=0,6/8,4=0,071 (либо 7,1 %), ?3=0,4/8,4=0,048 (либо 4,8%), ?4=1,4/8,4=0,167 (либо 16,7%), ?5=1,6/8,4=0,19 (либо 19%).

4. На практике для особенно точного отображения погрешности применяют среднее квадратическое отклонение. Дабы его обнаружить, возведите в квадрат все безусловные погрешности измерения и сложите между собой. После этого поделите это число на (N-1), где N – число измерений. Вычислив корень из полученного итога, вы получите среднее квадратическое отклонение, характеризующее погрешность измерений.

5. Дабы обнаружить предельную безусловную погрешность , обнаружьте минимальное число, заведомо превышающее безусловную погрешность либо равное ему. В рассмотренном примере примитивно выберите наибольшее значение – 1,6. Также изредка нужно обнаружить предельную относительную погрешность , в таком случае обнаружьте число, превышающее либо равное относительной погрешности, в примере она равна 19%.

Неотделимой частью всякого измерения является некоторая погрешность . Она представляет собой добротную отзыв точности проведенного изыскания. По форме представления она может быть безусловной и относительной.

Вам понадобится

  • – калькулятор.

Инструкция

1. Погрешности физических измерений подразделяются на систематические, случайные и дерзкие. Первые вызываются факторами, которые действуют идентично при многократном повторении измерений. Они непрерывны либо правомерно изменяются. Они могут быть вызваны неправильной установкой прибора либо несовершенством выбранного способа измерения.

2. Вторые появляются от могущества причин, и беспричинный нрав. К ним дозволено отнести неправильное округление при подсчете показаний и могущество окружающей среды. Если такие ошибки гораздо поменьше, чем деления шкалы этого прибора измерения, то в качестве безусловной погрешности уместно взять половину деления.

3. Промах либо дерзкая погрешность представляет собой итог слежения, тот, что круто отличается от всех остальных.

4. Безусловная погрешность приближенного числового значения – это разность между итогом, полученным в ходе измерения и правдивым значением измеряемой величины. Правдивое либо действительное значение особенно верно отражает исследуемую физическую величину. Эта погрешность является самой легкой количественной мерой ошибки. Её дозволено рассчитать по дальнейшей формуле: ?Х = Хисл – Хист. Она может принимать позитивное и негативное значение. Для большего понимания разглядим пример. В школе 1205 учащихся, при округлении до 1200 безусловная погрешность равняется: ? = 1200 – 1205 = 5.

5. Существуют определенные правила расчета погрешности величин. Во-первых, безусловная погрешность суммы 2-х само­стоятельных величин равна сумме их безусловных погрешностей: ?(Х+Y) = ?Х+?Y. Подобный подход применим для разности 2-х погрешностей. Дозволено воспользоваться формулой: ?(Х-Y) = ?Х+?Y.

6. Поправка представляет собой безусловную погрешность , взятую с обратным знаком: ?п = -?. Её применяют для исключения систематической погрешности.

Измерения физических величин неизменно сопровождаются той либо другой погрешностью . Она представляет собой отклонение итогов измерения от правдивого значения измеряемой величины.

Вам понадобится

  • -измерительный прибор:
  • -калькулятор.

Инструкция

1. Погрешности могут появиться в итоге могущества разных факторов. Среди них дозволено выделить несовершенство средств либо способов измерения, неточности при их изготовлении, неисполнение особых условий при проведении изыскания.

2. Существует несколько систематизаций погрешностей. По форме представления они могут быть безусловными, относительными и приведенными. Первые представляют собой разность между исчисленным и действительным значением величины. Выражаются в единицах измеряемого явления и находятся по формуле:?х = хисл- хист. Вторые определяются отношением безусловных погрешностей к величине правдивого значения показателя.Формула расчета имеет вид:? = ?х/хист. Измеряется в процентах либо долях.

3. Приведенная погрешность измерительного прибора находится как отношение?х к нормирующему значению хн. В зависимости типа прибора оно принимается либо равным пределу измерений, либо отнесено к их определенному диапазону.

4. По условиям происхождения различают основные и добавочные. Если измерения проводились в типичных условиях, то появляется 1-й вид. Отклонения, обусловленные выходом значений за пределы типичных, является дополнительной. Для ее оценки в документации обыкновенно устанавливают нормы, в пределах которых может изменяться величина при нарушении условий проведения измерений.

5. Также погрешности физических измерений подразделяются на систематические, случайные и дерзкие. Первые вызываются факторами, которые действуют при многократном повторении измерений. Вторые появляются от могущества причин, и беспричинный нрав. Промах представляет собой итог слежения, тот, что круто отличается от всех остальных.

6. В зависимости от нрава измеряемой величины могут применяться разные методы измерения погрешности. 1-й из них это способ Корнфельда. Он основан на исчислении доверительного промежутка в пределах от малейшего до максимального итога. Погрешность в этом случае будет представлять собой половину разности этих итогов: ?х = (хmax-xmin)/2. Еще один из методов – это расчет средней квадратической погрешности.

Измерения могут проводиться с различной степенью точности. При этом безусловно точными не бывают даже прецизионные приборы. Безусловная и относительная погрешности могут быть малы, но в действительности они есть фактически неизменно. Разница между приближенным и точным значениями некой величины именуется безусловной погрешностью . При этом отклонение может быть как в крупную, так и в меньшую сторону.

Вам понадобится

  • – данные измерений;
  • – калькулятор.

Инструкция

1. Перед тем как рассчитывать безусловную погрешность, примите за начальные данные несколько постулатов. Исключите дерзкие погрешности. Примите, что нужные поправки теснее вычислены и внесены в итог. Такой поправкой может быть, скажем, перенос начальной точки измерений.

2. Примите в качестве начального расположения то, что знамениты и учтены случайные погрешности. При этом подразумевается, что они поменьше систематических, то есть безусловной и относительной, характерных именно для этого прибора.

3. Случайные погрешности влияют на итог даже высокоточных измерений. Следственно всякий итог будет больше либо менее приближенным к безусловному, но неизменно будут расхождения. Определите данный промежуток. Его дозволено выразить формулой (Xизм- ?Х)?Хизм? (Хизм+?Х).

4. Определите величину, максимально приближенную к правдивому значению. В реальных измерениях берется среднее арифметическое, которое дозволено обнаружить по формуле, изображенной на рисунке. Примите итог за правдивую величину. Во многих случаях в качестве точного принимается показание эталонного прибора.

5. Зная правдивую величину измерения, вы можете обнаружить безусловную погрешность, которую нужно рассматривать при всех последующих измерениях. Обнаружьте величину Х1 – данные определенного измерения. Определите разность?Х, отняв от большего числа меньшее. При определении погрешности учитывается только модуль этой разности.

Обратите внимание!
Как водится, на практике безусловно точное измерение провести не получается. Следственно за эталонную величину принимается предельная погрешность. Она представляет собой наивысшее значение модуля безусловной погрешности.

Полезный совет
В утилитарных измерениях за величину безусловной погрешности обыкновенно принимается половина наименьшей цены деления. При действиях с числами за безусловную погрешность принимается половина значения цифры, которая находится в дальнейшим за точными цифрами разряде. Для определения класса точности прибора больше главным бывает отношение безусловной погрешности к итогу измерений либо к длине шкалы.

Погрешности измерений связаны с несовершенством приборов, инструментов, методологии. Точность зависит также от наблюдательности и состояния экспериментатора. Погрешности разделяются на безусловные, относительные и приведенные.

Инструкция

1. Пускай однократное измерение величины дало итог x. Правдивое значение обозначено за x0. Тогда безусловная погрешность ?x=|x-x0|. Она оценивает безусловную ошибку измерения. Безусловная погрешность складывается из 3 составляющих: случайных погрешностей, систематических погрешностей и промахов. Обыкновенно при измерении прибором берут в качестве погрешности половину цены деления. Для миллиметровой линейки это будет 0,5 мм.

2. Правдивое значение измеряемой величины находится в интервале (x-?x ; x+?x). Короче это записывается как x0=x±?x. Главно измерять x и?x в одних и тех же единицах измерения и записывать в одном и том же формате числа, скажем, целая часть и три цифры позже запятой. Выходит, безусловная погрешность дает границы промежутка, в котором с некоторой вероятностью находится правдивое значение.

3. Относительная погрешность выражает отношение безусловной погрешности к действительному значению величины: ?(x)=?x/x0. Это безразмерная величина, она может записываться также в процентах.

4. Измерения бывают прямые и косвенные. В прямых измерениях сразу замеряется желанная величина соответствующим прибором. Скажем, длина тела измеряется линейкой, напряжение – вольтметром. При косвенных измерениях величина находится по формуле зависимости между ней и замеряемыми величинами.

5. Если итог представляет собой связанность от 3 непринужденно измеряемых величин, имеющих погрешности?x1, ?x2, ?x3, то погрешность косвенного измерения?F=?[(?x1 ?F/?x1)?+(?x2 ?F/?x2)?+(?x3 ?F/?x3)?]. Тут?F/?x(i) – частные производные от функции по всякой из непринужденно измеряемых величин.

Полезный совет
Промахи – это дерзкие неточности измерений, возникающие при неисправности приборов, невнимательности экспериментатора, нарушении методологии эксперимента. Дабы уменьшить вероятность таких промахов, при проведении измерений будьте внимательны и детально расписывайте полученный итог.

Итог всякого измерения неминуемо сопровождается отклонением от правдивого значения. Вычислить погрешность измерения дозволено несколькими методами в зависимости от ее типа, скажем, статистическими способами определения доверительного промежутка, среднеквадратического отклонения и пр.

Инструкция

1. Существует несколько причин, по которым появляются погрешности измерений . Это приборная неточность, несовершенство методологии, а также ошибки, вызванные невнимательностью оператора, проводящего замеры. Помимо того, зачастую за правдивое значение параметра принимают его действительную величину, которая на самом деле является лишь особенно возможной, исходя из обзора статистической выборки итогов серии экспериментов.

2. Погрешность – это мера отклонения измеряемого параметра от его правдивого значения. Согласно способу Корнфельда, определяют доверительный промежуток, тот, что гарантирует определенную степень безопасности. При этом находят так называемые доверительные пределы, в которых колеблется величина, а погрешность вычисляют как полусумму этих значений:? = (xmax – xmin)/2.

3. Это интервальная оценка погрешности , которую имеет толк проводить при маленьком объеме статистической выборки. Точечная оценка заключается в вычислении математического ожидания и среднеквадратического отклонения.

4. Математическое ожидание представляет собой интегральную сумму ряда произведений 2-х параметров слежений. Это, собственно, значения измеряемой величины и ее вероятности в этих точках:М = ?xi pi.

5. Классическая формула для вычисления среднеквадратического отклонения полагает расчет среднего значения анализируемой последовательности значений измеряемой величины, а также рассматривает объем серии проведенных экспериментов:? = ?(?(xi – xср)?/(n – 1)).

6. По методу выражения выделяют также безусловную, относительную и приведенную погрешность. Безусловная погрешность выражается в тех же единицах, что и измеряемая величина, и равна разности между ее расчетным и правдивым значением:?x = x1 – x0.

7. Относительная погрешность измерения связана с безусловной, впрочем является больше высокоэффективной. Она не имеет размерности, изредка выражается в процентах. Ее величина равна отношению безусловной погрешности к правдивому либо расчетному значению измеряемого параметра:?x = ?x/x0 либо?x = ?x/x1.

8. Приведенная погрешность выражается отношением между безусловной погрешностью и некоторым условно принятым значением x, которое является постоянным для всех измерений и определяется по градуировке шкалы прибора. Если шкала начинается с нуля (односторонняя), то это нормирующее значение равно ее верхнему пределу, а если двусторонняя – ширине каждого ее диапазона:? = ?x/xn.

Самоконтроль при диабете считается значимым компонентом лечения. Для измерения сахара крови в домашних условиях применяется глюкометр. Возможная погрешность у этого прибора выше, чем у лабораторных анализаторов гликемии.


Измерение сахара крови нужно для оценки результативности лечения диабета и для коррекции дозы препаратов. От назначенной терапии зависит то, сколько раз в месяц понадобится мерить сахар. Изредка забор крови на обзор необходим неоднократно в течение дня, изредка довольно 1-2 раз в неделю. Самоконтроль исключительно нужен беременным и больным 1 типом диабета.

Допустимая погрешность у глюкометра по мировым стандартам

Глюкометр не считается высокоточным прибором. Он предуготовлен только для ориентировочного определения концентрации сахара в крови. Возможная погрешность у глюкометра по мировым эталонам составляет 20% при гликемии больше 4,2 ммоль/л. Скажем, если при самоконтроле зафиксирован ярус сахара 5 ммоль/л, то настоящее значение концентрации находится в интервале от 4 до 6 ммоль/л. Возможная погрешность у глюкометра в стандартных условиях измеряется в процентах, а не в ммоль/л. Чем выше показатели, тем огромнее погрешность в безусловных числах. Скажем, если сахар крови достигает около 10 ммоль/л, то оплошность не превышает 2 ммоль/л, а если сахар – около 20 ммоль/л, то разница с итогом лабораторного измерения может быть до 4 ммоль/л. В большинстве случаев глюкометр завышает показатели гликемии.Эталоны допускают превышение заявленной погрешности измерения в 5% случаев. Это значит, что всякое двадцатое изыскание может значительно искажать итоги.

Допустимая погрешность у глюкометров различных фирм

Глюкометры подлежат непременной сертификации. В сопровождающих прибор документах обыкновенно указаны цифры возможной погрешности измерений. Если этого пункта нет в инструкции, то погрешность соответствует 20%. Некоторые изготовители глюкометров уделяют специальное внимание точности измерений. Существуют приборы европейских фирм, которые имеют возможную погрешность поменьше 20%. Лучший показатель на сегодняшний день составляет 10-15%.

Погрешность у глюкометра при самоконтроле

Допустимая погрешность измерения характеризует работу прибора. На точность изыскания влияют и некоторые другие факторы. Ненормально подготовленная кожа, слишком малый либо огромный объем полученной капли крови, недопустимый температурный режим – все это может приводить к ошибкам. Только в том случае, если все правила самоконтроля соблюдаются, дозволено рассчитывать на заявленную возможную погрешность изыскания. Правила самоконтроля с поддержкой глюкометра дозволено узнать у лечащего доктора.Точность глюкометра дозволено проверить в сервисном центре. Гарантийные обязательства изготовителей предусматривают бесплатные консультации и устранение неполадок.

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

В ФИЗИЧЕСКОМ ПРАКТИКУМЕ

Измерения и погрешности измерений

Физика - наука экспериментальная, это означает, что физические законы устанавливаются и проверяются путем накопления и сопоставления экспериментальных данных. Цель физического практикума заключается в том, чтобы студенты изучили на опыте основные физические явления, научились правильно измерять числовые значения физических величин и сопоставлять их с теоретическими формулами.

Все измерения можно разделить на два вида – прямые икосвенные .

При прямых измерениях значение искомой величины непосредственно получается по показаниям измерительного прибора. Так, например, длина измеряется линейкой, время по часам и т. д.

Если искомая физическая величина не может быть измерена непосредственно прибором, а посредством формулы выражается через измеряемые величины, то такие измерения называются косвенными .

Измерение любой величины не дает абсолютно точного значения этой величины. Каждое измерение всегда содержит некоторую погрешность (ошибку). Ошибкой называют разность между измеренным и истинным значением.

Ошибки принято делить на систематические и случайные .

Систематической называют ошибку, которая остается постоянной на протяжении всей серии измерений. Такие погрешности обусловлены несовершенством измерительного инструмента (например, смещением нуля прибора) или методом измерений и могут быть, в принципе, исключены из конечного результата введением соответствующей поправки.

К систематическим ошибкам относятся также погрешность измерительных приборов. Точность любого прибора ограничена и характеризуется его классом точности, который, как правило, обозначен на измерительной шкале.

Случайной называется ошибка, которая изменяется в разных опытах и может быть и положительной и отрицательной. Случайные ошибки обусловлены причинами, зависящими как от измерительного устройства, (трение, зазоры, и т. п..), так и от внешних условий (вибрации, колебания напряжения в сети и т.п.).

Случайные ошибки нельзя исключить опытным путем, но их влияние на результат можно уменьшить многократными измерениями.

ВЫЧИСЛЕНИЕ ПОГРЕШНОСТИ ПРИ ПРЯМЫХ ИЗМЕРЕНИЯХ

СРЕДНЕЕ ЗНАЧЕНИЕ И СРЕДНЯЯ АБСОЛЮТНАЯ ОШИБКА.

Предположим, что мы проводим серию измерений величины Х. Из-за наличия случайных ошибок, получаем n различных значений:

Х 1 , Х 2 , Х 3 … Х n

В качестве результата измерений обычно принимают среднее значение

Разность между средним значением и результатом i – го измерения назовем абсолютной ошибкой этого измерения

В качестве меры ошибки среднего значения можно принять среднее значение абсолютной ошибки отдельного измерения

(2)

Величина
называется средней арифметической (или средней абсолютной) ошибкой.

Тогда результат измерений следует записать в виде

(3)

Для характеристики точности измерений служит относительная ошибка, которую принято выражать в процентах

(4)

СРЕДНЯЯ КВАДРАТИЧНАЯ ОШИБКА.

При ответственных измерениях, когда необходимо знать надежность полученных результатов, используется средняя квадратичная ошибка (или стандартное отклонение), которая определяется формулой

(5)

Величина  характеризует отклонение отдельного единичного измерения от истинного значения.

Если мы вычислили по n измерениям среднее значение по формуле (2), то это значение будет более точным, то есть будет меньше отличаться от истинного, чем каждое отдельное измерение. Средняя квадратичная ошибка среднего значения
равна

(6)

где  - среднеквадратичная ошибка каждого отдельного измерения, n – число измерений.

Таким образом, увеличивая число опытов, можно уменьшить случайную ошибку в величине среднего значения.

В настоящее время результаты научных и технических измерений принято представлять в виде

(7)

Как показывает теория, при такой записи мы знаем надежность полученного результата, а именно, что истинная величина Х с вероятностью 68% отличается отне более, чем на
.

При использовании же средней арифметической (абсолютной) ошибки (формула 2) о надежности результата ничего сказать нельзя. Некоторое представление о точности проведенных измерений в этом случае дает относительная ошибка (формула 4).

При выполнении лабораторных работ студенты могут использовать как среднюю абсолютную ошибку, так и среднюю квадратичную. Какую из них применять указывается непосредственно в каждой конкретной работе (или указывается преподавателем).

Обычно если число измерений не превышает 3 – 5, то можно использовать среднюю абсолютную ошибку. Если число измерений порядка 10 и более, то следует использовать более корректную оценку с помощью средней квадратичной ошибки среднего (формулы 5 и 6).

УЧЕТ СИСТЕМАТИЧЕСКИХ ОШИБОК.

Увеличением числа измерений можно уменьшить только случайные ошибки опыта, но не систематические.

Максимальное значение систематической ошибки обычно указывается на приборе или в его паспорте. Для измерений с помощью обычной металлической линейки систематическая ошибка составляет не менее 0,5 мм; для измерений штангенциркулем –

0,1 – 0,05 мм; микрометром – 0,01 мм.

Часто в качестве систематической ошибки берется половина цены деления прибора.

На шкалах электроизмерительных приборов указывается класс точности. Зная класс точности К, можно вычислить систематическую ошибку прибора ∆Х по формуле

где К – класс точности прибора, Х пр – предельное значение величины, которое может быть измерено по шкале прибора.

Так, амперметр класса 0,5 со шкалой до 5А измеряет ток с ошибкой не более

Погрешность цифрового прибора равна единице наименьшего индицируемого разряда.

Среднее значение полной погрешности складывается из случайной исистематической погрешностей.

Ответ с учетом систематических и случайных ошибок записывается в виде

ПОГРЕШНОСТИ КОСВЕННЫХ ИЗМЕРЕНИЙ

В физических экспериментах чаще бывает так, что искомая физическая величина сама на опыте измерена быть не может, а является функцией других величин, измеряемых непосредственно. Например, чтобы определить объём цилиндра, надо измерить диаметр D и высоту h , а затем вычислить объем по формуле

Величины D иh будут измерены с некоторой ошибкой.Следовательно, вычисленная величина V получится также с некоторой ошибкой. Надо уметь выражать погрешность вычисленной величины через погрешности измеренных величин.

Как и при прямых измерениях можно вычислять среднюю абсолютную (среднюю арифметическую) ошибку или среднюю квадратичную ошибку.

Общие правила вычисления ошибок для обоих случаев выводятся с помощью дифференциального исчисления.

Пусть искомая величина φ является функцией нескольких переменных Х, У, Z

φ(Х, У, Z …).

Путем прямых измерений мы можем найти величины
, а также оценить их средние абсолютные ошибки
… или средние квадратичные ошибки Х,  У,  Z …

Тогда средняя арифметическая погрешность  вычисляется по формуле

где
- частные производные от φ по Х, У, Z . Они вычисляются для средних значений

Средняя квадратичная погрешность вычисляется по формуле

Пример. Выведем формулы погрешности для вычисления объёма цилиндра.

а) Средняя арифметическая погрешность.

Величины D и h измеряются соответственно с ошибкой D и h.

б) Средняя квадратичная погрешность.

Величины D и h измеряются соответственно с ошибкой  D ,  h .

Погрешность величины объёма будет равна

Если формула представляет выражение удобное для логарифмирования (то есть произведение, дробь, степень), то удобнее вначале вычислять относительную погрешность. Для этого (в случае средней арифметической погрешности) надо проделать следующее.

1. Прологарифмировать выражение.

2. Продифференцировать его.

3. Объединить все члены с одинаковым дифференциалом и вынести его за скобки.

4. Взять выражение перед различными дифференциалами по модулю.

5. Заменить значки дифференциалов d на значки абсолютной погрешности .

В итоге получится формула для относительной погрешности

Затем, зная , можно вычислить абсолютную погрешность 

 = 

Пример.

Аналогично можно записать относительную среднюю квадратичную погрешность

Правила представления результатов измерения следующие:

    погрешность должна округляться до одной значащей цифры:

правильно  = 0,04,

неправильно -  = 0,0382;

    последняя значащая цифра результата должна быть того же порядка величины, что и погрешность:

правильно  = 9,830,03,

неправильно -  = 9,8260,03;

    если результат имеет очень большую или очень малую величину, необходимо использовать показательную форму записи - одну и ту же для результата и его погрешности, причем запятая десятичной дроби должна следовать за первой значащей цифрой результата:

правильно -  = (5,270,03)10 -5 ,

неправильно -  = 0,00005270,0000003,

 = 5,2710 -5 0,0000003,

 = = 0,0000527310 -7 ,

 = (5273)10 -7 ,

 = (0,5270,003) 10 -4 .

    Если результат имеет размерность, ее необходимо указать:

правильно – g=(9,820,02) м/c 2 ,

неправильно – g=(9,820,02).

Правила построения графиков

1. Графики строятся на миллиметровой бумаге.

2. Перед построением графика необходимо четко определить, какая переменная величина является аргументом, а какая функцией. Значения аргумента откладываются на оси абсцисс (ось х ), значения функции - на оси ординат (ось у ).

3. Из экспериментальных данных определить пределы изменения аргумента и функции.

4. Указать физические величины, откладываемые на координатных осях, и обозначить единицы величин.

5. Нанести на график экспериментальные точки, обозначив их (крестиком, кружочком, жирной точкой).

6. Провести через экспериментальные точки плавную кривую (прямую) так, чтобы эти точки приблизительно в равном количестве располагались по обе стороны от кривой.